Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Adv Inf Retr ; 14609: 34-49, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38585224

ABSTRACT

Nearest neighbor-based similarity searching is a common task in chemistry, with notable use cases in drug discovery. Yet, some of the most commonly used approaches for this task still leverage a brute-force approach. In practice this can be computationally costly and overly time-consuming, due in part to the sheer size of modern chemical databases. Previous computational advancements for this task have generally relied on improvements to hardware or dataset-specific tricks that lack generalizability. Approaches that leverage lower-complexity searching algorithms remain relatively underexplored. However, many of these algorithms are approximate solutions and/or struggle with typical high-dimensional chemical embeddings. Here we evaluate whether a combination of low-dimensional chemical embeddings and a k-d tree data structure can achieve fast nearest neighbor queries while maintaining performance on standard chemical similarity search benchmarks. We examine different dimensionality reductions of standard chemical embeddings as well as a learned, structurally-aware embedding-SmallSA-for this task. With this framework, searches on over one billion chemicals execute in less than a second on a single CPU core, five orders of magnitude faster than the brute-force approach. We also demonstrate that SmallSA achieves competitive performance on chemical similarity benchmarks.

2.
Sci Rep ; 14(1): 2667, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38302662

ABSTRACT

Pediatric Crohn's disease (CD) is characterized by a severe disease course with frequent complications. We sought to apply machine learning-based models to predict risk of developing future complications in pediatric CD using ileal and colonic gene expression. Gene expression data was generated from 101 formalin-fixed, paraffin-embedded (FFPE) ileal and colonic biopsies obtained from treatment-naïve CD patients and controls. Clinical outcomes including development of strictures or fistulas and progression to surgery were analyzed using differential expression and modeled using machine learning. Differential expression analysis revealed downregulation of pathways related to inflammation and extra-cellular matrix production in patients with strictures. Machine learning-based models were able to incorporate colonic gene expression and clinical characteristics to predict outcomes with high accuracy. Models showed an area under the receiver operating characteristic curve (AUROC) of 0.84 for strictures, 0.83 for remission, and 0.75 for surgery. Genes with potential prognostic importance for strictures (REG1A, MMP3, and DUOX2) were not identified in single gene differential analysis but were found to have strong contributions to predictive models. Our findings in FFPE tissue support the importance of colonic gene expression and the potential for machine learning-based models in predicting outcomes for pediatric CD.


Subject(s)
Crohn Disease , Child , Humans , Constriction, Pathologic , Crohn Disease/pathology , Gene Expression , Machine Learning , Lithostathine/genetics
3.
Drug Discov Today ; 29(3): 103881, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218213

ABSTRACT

The human kinome, with more than 500 proteins, is crucial for cell signaling and disease. Yet, about one-third of kinases lack in-depth study. The Data and Resource Generating Center for Understudied Kinases has developed multiple resources to address this challenge including creation of a heavy amino acid peptide library for parallel reaction monitoring and quantitation of protein kinase expression, use of understudied kinases tagged with a miniTurbo-biotin ligase to determine interaction networks by proximity-dependent protein biotinylation, NanoBRET probe development for screening chemical tool target specificity in live cells, characterization of small molecule chemical tools inhibiting understudied kinases, and computational tools for defining kinome architecture. These resources are available through the Dark Kinase Knowledgebase, supporting further research into these understudied protein kinases.


Subject(s)
Protein Kinases , Proteins , Humans , Protein Kinases/metabolism , Proteomics
4.
Dis Colon Rectum ; 67(3): 387-397, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37994445

ABSTRACT

BACKGROUND: Pathologic complete response after neoadjuvant therapy is an important prognostic indicator for locally advanced rectal cancer and may give insights into which patients might be treated nonoperatively in the future. Existing models for predicting pathologic complete response in the pretreatment setting are limited by small data sets and low accuracy. OBJECTIVE: We sought to use machine learning to develop a more generalizable predictive model for pathologic complete response for locally advanced rectal cancer. DESIGN: Patients with locally advanced rectal cancer who underwent neoadjuvant therapy followed by surgical resection were identified in the National Cancer Database from years 2010 to 2019 and were split into training, validation, and test sets. Machine learning techniques included random forest, gradient boosting, and artificial neural network. A logistic regression model was also created. Model performance was assessed using an area under the receiver operating characteristic curve. SETTINGS: This study used a national, multicenter data set. PATIENTS: Patients with locally advanced rectal cancer who underwent neoadjuvant therapy and proctectomy. MAIN OUTCOME MEASURES: Pathologic complete response defined as T0/xN0/x. RESULTS: The data set included 53,684 patients. Pathologic complete response was experienced by 22.9% of patients. Gradient boosting showed the best performance with an area under the receiver operating characteristic curve of 0.777 (95% CI, 0.773-0.781), compared with 0.684 (95% CI, 0.68-0.688) for logistic regression. The strongest predictors of pathologic complete response were no lymphovascular invasion, no perineural invasion, lower CEA, smaller size of tumor, and microsatellite stability. A concise model including the top 5 variables showed preserved performance. LIMITATIONS: The models were not externally validated. CONCLUSIONS: Machine learning techniques can be used to accurately predict pathologic complete response for locally advanced rectal cancer in the pretreatment setting. After fine-tuning a data set including patients treated nonoperatively, these models could help clinicians identify the appropriate candidates for a watch-and-wait strategy. See Video Abstract . EL CNCER DE RECTO BASADA EN FACTORES PREVIOS AL TRATAMIENTO MEDIANTE EL APRENDIZAJE AUTOMTICO: ANTECEDENTES:La respuesta patológica completa después de la terapia neoadyuvante es un indicador pronóstico importante para el cáncer de recto localmente avanzado y puede dar información sobre qué pacientes podrían ser tratados de forma no quirúrgica en el futuro. Los modelos existentes para predecir la respuesta patológica completa en el entorno previo al tratamiento están limitados por conjuntos de datos pequeños y baja precisión.OBJETIVO:Intentamos utilizar el aprendizaje automático para desarrollar un modelo predictivo más generalizable para la respuesta patológica completa para el cáncer de recto localmente avanzado.DISEÑO:Los pacientes con cáncer de recto localmente avanzado que se sometieron a terapia neoadyuvante seguida de resección quirúrgica se identificaron en la Base de Datos Nacional del Cáncer de los años 2010 a 2019 y se dividieron en conjuntos de capacitación, validación y prueba. Las técnicas de aprendizaje automático incluyeron bosque aleatorio, aumento de gradiente y red neuronal artificial. También se creó un modelo de regresión logística. El rendimiento del modelo se evaluó utilizando el área bajo la curva característica operativa del receptor.ÁMBITO:Este estudio utilizó un conjunto de datos nacional multicéntrico.PACIENTES:Pacientes con cáncer de recto localmente avanzado sometidos a terapia neoadyuvante y proctectomía.PRINCIPALES MEDIDAS DE VALORACIÓN:Respuesta patológica completa definida como T0/xN0/x.RESULTADOS:El conjunto de datos incluyó 53.684 pacientes. El 22,9% de los pacientes experimentaron una respuesta patológica completa. El refuerzo de gradiente mostró el mejor rendimiento con un área bajo la curva característica operativa del receptor de 0,777 (IC del 95%: 0,773 - 0,781), en comparación con 0,684 (IC del 95%: 0,68 - 0,688) para la regresión logística. Los predictores más fuertes de respuesta patológica completa fueron la ausencia de invasión linfovascular, la ausencia de invasión perineural, un CEA más bajo, un tamaño más pequeño del tumor y la estabilidad de los microsatélites. Un modelo conciso que incluye las cinco variables principales mostró un rendimiento preservado.LIMITACIONES:Los modelos no fueron validados externamente.CONCLUSIONES:Las técnicas de aprendizaje automático se pueden utilizar para predecir con precisión la respuesta patológica completa para el cáncer de recto localmente avanzado en el entorno previo al tratamiento. Después de realizar ajustes en un conjunto de datos que incluye pacientes tratados de forma no quirúrgica, estos modelos podrían ayudar a los médicos a identificar a los candidatos adecuados para una estrategia de observar y esperar. (Traducción-Dr. Ingrid Melo ).


Subject(s)
Pathologic Complete Response , Rectal Neoplasms , Humans , Rectal Neoplasms/surgery , Rectum/pathology , Prognosis , Neoadjuvant Therapy/methods , Retrospective Studies , Neoplasm Staging
5.
Pac Symp Biocomput ; 29: 276-290, 2024.
Article in English | MEDLINE | ID: mdl-38160286

ABSTRACT

Protein kinases are a primary focus in targeted therapy development for cancer, owing to their role as regulators in nearly all areas of cell life. Recent strategies targeting the kinome with combination therapies have shown promise, such as trametinib and dabrafenib in advanced melanoma, but empirical design for less characterized pathways remains a challenge. Computational combination screening is an attractive alternative, allowing in-silico filtering prior to experimental testing of drastically fewer leads, increasing efficiency and effectiveness of drug development pipelines. In this work, we generated combined kinome inhibition states of 40,000 kinase inhibitor combinations from kinobeads-based kinome profiling across 64 doses. We then integrated these with transcriptomics from CCLE to build machine learning models with elastic-net feature selection to predict cell line sensitivity across nine cancer types, with accuracy R2 ∼ 0.75-0.9. We then validated the model by using a PDX-derived TNBC cell line and saw good global accuracy (R2 ∼ 0.7) as well as high accuracy in predicting synergy using four popular metrics (R2 ∼ 0.9). Additionally, the model was able to predict a highly synergistic combination of trametinib and omipalisib for TNBC treatment, which incidentally was recently in phase I clinical trials. Our choice of tree-based models for greater interpretability allowed interrogation of highly predictive kinases in each cancer type, such as the MAPK, CDK, and STK kinases. Overall, these results suggest that kinome inhibition states of kinase inhibitor combinations are strongly predictive of cell line responses and have great potential for integration into computational drug screening pipelines. This approach may facilitate the identification of effective kinase inhibitor combinations and accelerate the development of novel cancer therapies, ultimately improving patient outcomes.


Subject(s)
Antineoplastic Agents , Melanoma , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Computational Biology/methods , Antineoplastic Agents/therapeutic use , Melanoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Line, Tumor
6.
PeerJ ; 11: e16342, 2023.
Article in English | MEDLINE | ID: mdl-38025707

ABSTRACT

Protein kinase activity forms the backbone of cellular information transfer, acting both individually and as part of a broader network, the kinome. Their central role in signaling leads to kinome dysfunction being a common driver of disease, and in particular cancer, where numerous kinases have been identified as having a causal or modulating role in tumor development and progression. As a result, the development of therapies targeting kinases has rapidly grown, with over 70 kinase inhibitors approved for use in the clinic and over double this number currently in clinical trials. Understanding the relationship between kinase inhibitor treatment and their effects on downstream cellular phenotype is thus of clear importance for understanding treatment mechanisms and streamlining compound screening in therapy development. In this work, we combine two large-scale kinome profiling data sets and use them to link inhibitor-kinome interactions with cell line treatment responses (AUC/IC50). We then built computational models on this data set that achieve a high degree of prediction accuracy (R2 of 0.7 and RMSE of 0.9) and were able to identify a set of well-characterized and understudied kinases that significantly affect cell responses. We further validated these models experimentally by testing predicted effects in breast cancer cell lines and extended the model scope by performing additional validation in patient-derived pancreatic cancer cell lines. Overall, these results demonstrate that broad quantification of kinome inhibition state is highly predictive of downstream cellular phenotypes.


Subject(s)
Neoplasms , Phosphotransferases , Humans , Cell Line , Phosphotransferases/pharmacology , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Neoplasms/drug therapy
8.
Ann Surg Oncol ; 30(12): 7107-7115, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37563337

ABSTRACT

BACKGROUND: Intraoperative specimen mammography is a valuable tool in breast cancer surgery, providing immediate assessment of margins for a resected tumor. However, the accuracy of specimen mammography in detecting microscopic margin positivity is low. We sought to develop an artificial intelligence model to predict the pathologic margin status of resected breast tumors using specimen mammography. METHODS: A dataset of specimen mammography images matched with pathologic margin status was collected from our institution from 2017 to 2020. The dataset was randomly split into training, validation, and test sets. Specimen mammography models pretrained on radiologic images were developed and compared with models pretrained on nonmedical images. Model performance was assessed using sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC). RESULTS: The dataset included 821 images, and 53% had positive margins. For three out of four model architectures tested, models pretrained on radiologic images outperformed nonmedical models. The highest performing model, InceptionV3, showed sensitivity of 84%, specificity of 42%, and AUROC of 0.71. Model performance was better among patients with invasive cancers, less dense breasts, and non-white race. CONCLUSIONS: This study developed and internally validated artificial intelligence models that predict pathologic margins status for partial mastectomy from specimen mammograms. The models' accuracy compares favorably with published literature on surgeon and radiologist interpretation of specimen mammography. With further development, these models could more precisely guide the extent of resection, potentially improving cosmesis and reducing reoperations.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Breast Neoplasms/pathology , Artificial Intelligence , Mastectomy , Mammography/methods , Breast/pathology , Mastectomy, Segmental/methods , Retrospective Studies
9.
bioRxiv ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37577663

ABSTRACT

Protein kinases are a primary focus in targeted therapy development for cancer, owing to their role as regulators in nearly all areas of cell life. Kinase inhibitors are one of the fastest growing drug classes in oncology, but resistance acquisition to kinase-targeting monotherapies is inevitable due to the dynamic and interconnected nature of the kinome in response to perturbation. Recent strategies targeting the kinome with combination therapies have shown promise, such as the approval of Trametinib and Dabrafenib in advanced melanoma, but similar empirical combination design for less characterized pathways remains a challenge. Computational combination screening is an attractive alternative, allowing in-silico screening prior to in-vitro or in-vivo testing of drastically fewer leads, increasing efficiency and effectiveness of drug development pipelines. In this work, we generate combined kinome inhibition states of 40,000 kinase inhibitor combinations from kinobeads-based kinome profiling across 64 doses. We then integrated these with baseline transcriptomics from CCLE to build robust machine learning models to predict cell line sensitivity from NCI-ALMANAC across nine cancer types, with model accuracy R2 ~ 0.75-0.9 after feature selection using elastic-net regression. We further validated the model's ability to extend to real-world examples by using the best-performing breast cancer model to generate predictions for kinase inhibitor combination sensitivity and synergy in a PDX-derived TNBC cell line and saw reasonable global accuracy in our experimental validation (R2 ~ 0.7) as well as high accuracy in predicting synergy using four popular metrics (R2 ~ 0.9). Additionally, the model was able to predict a highly synergistic combination of Trametinib (MEK inhibitor) and Omipalisib (PI3K inhibitor) for TNBC treatment, which incidentally was recently in phase I clinical trials for TNBC. Our choice of tree-based models over networks for greater interpretability also allowed us to further interrogate which specific kinases were highly predictive of cell sensitivity in each cancer type, and we saw confirmatory strong predictive power in the inhibition of MAPK, CDK, and STK kinases. Overall, these results suggest that kinome inhibition states of kinase inhibitor combinations are strongly predictive of cell line responses and have great potential for integration into computational drug screening pipelines. This approach may facilitate the identification of effective kinase inhibitor combinations and accelerate the development of novel cancer therapies, ultimately improving patient outcomes.

10.
J Gastrointest Surg ; 27(9): 1925-1935, 2023 09.
Article in English | MEDLINE | ID: mdl-37407899

ABSTRACT

BACKGROUND: Optimal treatment of anal squamous cell carcinoma (ASCC) is definitive chemoradiation. Patients with persistent or recurrent disease require abdominoperineal resection (APR). Current models for predicting need for APR and overall survival are limited by low accuracy or small datasets. This study sought to use machine learning (ML) to develop more accurate models for locoregional failure and overall survival for ASCC. METHODS: This study used the National Cancer Database from 2004-2018, divided into training, validation, and test sets. We included patients with stage I-III ASCC who underwent chemoradiation. Our primary outcomes were need for APR and 3-year overall survival. Random forest (RF), gradient boosting (XGB), and neural network (NN) ML-based models were developed and compared with logistic regression (LR). Accuracy was assessed using area under the receiver operating characteristic curve (AUROC). RESULTS: APR was required in 5.3% (1,015/18,978) of patients. XGB performed best with AUROC of 0.813, compared with 0.691 for LR. Tumor size, lymphovascular invasion, and tumor grade showed the strongest influence on model predictions. Mortality was 23.6% (7,988/33,834). AUROC for XGB and LR were similar at 0.766 and 0.748, respectively. For this model, age, radiation dose, sex, and insurance status were the most influential variables. CONCLUSIONS: We developed and internally validated machine learning-based models for predicting outcomes in ASCC and showed higher accuracy versus LR for locoregional failure, but not overall survival. After external validation, these models may assist clinicians with identifying patients with ASCC at high risk of treatment failure.


Subject(s)
Anus Neoplasms , Carcinoma, Squamous Cell , Proctectomy , Humans , Chemoradiotherapy , Treatment Failure , Machine Learning , Anus Neoplasms/therapy
11.
Surg Obes Relat Dis ; 19(11): 1236-1244, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37455158

ABSTRACT

BACKGROUND: While bariatric surgery is an effective method for achieving long-term weight loss, postoperative readmissions are associated with negative clinical outcomes and significant costs. OBJECTIVES: We aimed to use machine learning (ML) algorithms to predict readmissions and compare results to logistic regression. SETTING: Hospitals participating in the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program, United States. METHODS: Patients who underwent sleeve gastrectomy (SG), Roux-en-Y gastric bypass (RYGB), and biliopancreatic diversion with duodenal switch between 2016 and 2020 were selected from the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program (MBSAQIP) database. Patient variables reported by the MBSAQIP database were analyzed by ML algorithms random forest (RF), gradient boosting (XGB), and deep neural networks (NN), and the results of the predictive models were compared to logistic regression using area under the receiver operating characteristic curve (AUROC). RESULTS: Our study included 863,348 patients, of which 39,068 (4.52%) were readmitted. AUROC scores were XGB .785 (95% CI .784-.786), RF .785 (95% CI .784-.785), and NN .754 (95% CI .753-.754), compared with .62 (95% CI .62-.621) for logistic regression (LR) (P < .001). The sensitivity and specificity for XGB, the best performing model, were 73.81% and 70%, compared with 52.94% and 70% for logistic regression. The most important variables were intervention or reoperation prior to discharge, unplanned ICU admission, initial procedure, and the intraoperative transfusion. CONCLUSIONS: ML demonstrates significant advantages over logistic regression when predicting 30-day readmission following bariatric surgery. With external validation, models could identify the best candidates for early discharge or targeted postdischarge resources.

12.
Surg Endosc ; 37(9): 7121-7127, 2023 09.
Article in English | MEDLINE | ID: mdl-37311893

ABSTRACT

BACKGROUND: Postoperative gastrointestinal bleeding (GIB) is a rare but serious complication of bariatric surgery. The recent rise in extended venous thromboembolism regimens as well as outpatient bariatric surgery may increase the risk of postoperative GIB or lead to delay in diagnosis. This study seeks to use machine learning (ML) to create a model that predicts postoperative GIB to aid surgeon decision-making and improve patient counseling for postoperative bleeds. METHODS: The Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program (MBSAQIP) database was used to train and validate three types of ML methods: random forest (RF), gradient boosting (XGB), and deep neural networks (NN), and compare them with logistic regression (LR) regarding postoperative GIB. The dataset was split using fivefold cross-validation into training and validation sets, in an 80/20 ratio. The performance of the models was assessed using area under the receiver operating characteristic curve (AUROC) and compared with the DeLong test. Variables with the strongest effect were identified using Shapley additive explanations (SHAP). RESULTS: The study included 159,959 patients. Postoperative GIB was identified in 632 (0.4%) patients. The three ML methods, RF (AUROC 0.764), XGB (AUROC 0.746), and NN (AUROC 0.741) all outperformed LR (AUROC 0.709). The best ML method, RF, was able to predict postoperative GIB with a specificity and sensitivity of 70.0% and 75.4%, respectively. Using DeLong testing, the difference between RF and LR was determined to be significant with p < 0.01. Type of bariatric surgery, pre-op hematocrit, age, duration of procedure, and pre-op creatinine were the 5 most important features identified by ML retrospectively. CONCLUSIONS: We have developed a ML model that outperformed LR in predicting postoperative GIB. Using ML models for risk prediction can be a helpful tool for both surgeons and patients undergoing bariatric procedures but more interpretable models are needed.


Subject(s)
Bariatric Surgery , Machine Learning , Humans , Retrospective Studies , Gastrointestinal Hemorrhage/diagnosis , Gastrointestinal Hemorrhage/etiology , Logistic Models , Postoperative Hemorrhage/diagnosis , Postoperative Hemorrhage/etiology , Bariatric Surgery/adverse effects
13.
Am Surg ; 89(12): 5702-5710, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37133432

ABSTRACT

BACKGROUND: Ureteral injury (UI) is a rare but devastating complication during colorectal surgery. Ureteral stents may reduce UI but carry risks themselves. Risk predictors for UI could help target the use of stents, but previous efforts have relied on logistic regression (LR), shown moderate accuracy, and used intraoperative variables. We sought to use an emerging approach in predictive analytics, machine learning, to create a model for UI. METHODS: Patients who underwent colorectal surgery were identified in the National Surgical Quality Improvement Program (NSQIP) database. Patients were split into training, validation, and test sets. The primary outcome was UI. Three machine learning approaches were tested including random forest (RF), gradient boosting (XGB), and neural networks (NN), and compared with traditional LR. Model performance was assessed using area under the curve (AUROC). RESULTS: The data set included 262,923 patients, of whom 1519 (.578%) experienced UI. Of the modeling techniques, XGB performed the best, with an AUROC score of .774 (95% CI .742-.807) compared with .698 (95% CI .664-.733) for LR. Random forest and NN performed similarly with scores of .738 and .763, respectively. Type of procedure, work RVUs, indication for surgery, and mechanical bowel prep showed the strongest influence on model predictions. CONCLUSIONS: Machine learning-based models significantly outperformed LR and previous models and showed high accuracy in predicting UI during colorectal surgery. With proper validation, they could be used to support decision making regarding the placement of ureteral stents preoperatively.


Subject(s)
Abdominal Injuries , Colorectal Surgery , Digestive System Surgical Procedures , Humans , Colorectal Surgery/adverse effects , Databases, Factual , Machine Learning
14.
medRxiv ; 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36945565

ABSTRACT

Intra-operative specimen mammography is a valuable tool in breast cancer surgery, providing immediate assessment of margins for a resected tumor. However, the accuracy of specimen mammography in detecting microscopic margin positivity is low. We sought to develop a deep learning-based model to predict the pathologic margin status of resected breast tumors using specimen mammography. A dataset of specimen mammography images matched with pathology reports describing margin status was collected. Models pre-trained on radiologic images were developed and compared with models pre-trained on non-medical images. Model performance was assessed using sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC). The dataset included 821 images and 53% had positive margins. For three out of four model architectures tested, models pre-trained on radiologic images outperformed domain-agnostic models. The highest performing model, InceptionV3, showed a sensitivity of 84%, a specificity of 42%, and AUROC of 0.71. These results compare favorably with the published literature on surgeon and radiologist interpretation of specimen mammography. With further development, these models could assist clinicians with identifying positive margins intra-operatively and decrease the rate of positive margins and re-operation in breast-conserving surgery.

16.
PLoS Comput Biol ; 19(2): e1010888, 2023 02.
Article in English | MEDLINE | ID: mdl-36809237

ABSTRACT

Protein kinases play a vital role in a wide range of cellular processes, and compounds that inhibit kinase activity emerging as a primary focus for targeted therapy development, especially in cancer. Consequently, efforts to characterize the behavior of kinases in response to inhibitor treatment, as well as downstream cellular responses, have been performed at increasingly large scales. Previous work with smaller datasets have used baseline profiling of cell lines and limited kinome profiling data to attempt to predict small molecule effects on cell viability, but these efforts did not use multi-dose kinase profiles and achieved low accuracy with very limited external validation. This work focuses on two large-scale primary data types, kinase inhibitor profiles and gene expression, to predict the results of cell viability screening. We describe the process by which we combined these data sets, examined their properties in relation to cell viability and finally developed a set of computational models that achieve a reasonably high prediction accuracy (R2 of 0.78 and RMSE of 0.154). Using these models, we identified a set of kinases, several of which are understudied, that are strongly influential in the cell viability prediction models. In addition, we also tested to see if a wider range of multiomics data sets could improve the model results and found that proteomic kinase inhibitor profiles were the single most informative data type. Finally, we validated a small subset of the model predictions in several triple-negative and HER2 positive breast cancer cell lines demonstrating that the model performs well with compounds and cell lines that were not included in the training data set. Overall, this result demonstrates that generic knowledge of the kinome is predictive of very specific cell phenotypes, and has the potential to be integrated into targeted therapy development pipelines.


Subject(s)
Antineoplastic Agents , Neoplasms , Multiomics , Proteomics , Cell Survival , Protein Kinases/metabolism , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology
17.
Dis Colon Rectum ; 66(3): 458-466, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36538699

ABSTRACT

BACKGROUND: Surgical-site infection is a source of significant morbidity after colorectal surgery. Previous efforts to develop models that predict surgical-site infection have had limited accuracy. Machine learning has shown promise in predicting postoperative outcomes by identifying nonlinear patterns within large data sets. OBJECTIVE: This study aimed to seek usage of machine learning to develop a more accurate predictive model for colorectal surgical-site infections. DESIGN: Patients who underwent colorectal surgery were identified in the American College of Surgeons National Quality Improvement Program database from years 2012 to 2019 and were split into training, validation, and test sets. Machine-learning techniques included random forest, gradient boosting, and artificial neural network. A logistic regression model was also created. Model performance was assessed using area under the receiver operating characteristic curve. SETTINGS: A national, multicenter data set. PATIENTS: Patients who underwent colorectal surgery. MAIN OUTCOME MEASURES: The primary outcome (surgical-site infection) included patients who experienced superficial, deep, or organ-space surgical-site infections. RESULTS: The data set included 275,152 patients after the application of exclusion criteria. Of all patients, 10.7% experienced a surgical-site infection. Artificial neural network showed the best performance with area under the receiver operating characteristic curve of 0.769 (95% CI, 0.762-0.777), compared with 0.766 (95% CI, 0.759-0.774) for gradient boosting, 0.764 (95% CI, 0.756-0.772) for random forest, and 0.677 (95% CI, 0.669-0.685) for logistic regression. For the artificial neural network model, the strongest predictors of surgical-site infection were organ-space surgical-site infection present at time of surgery, operative time, oral antibiotic bowel preparation, and surgical approach. LIMITATIONS: Local institutional validation was not performed. CONCLUSIONS: Machine-learning techniques predict colorectal surgical-site infections with higher accuracy than logistic regression. These techniques may be used to identify patients at increased risk and to target preventive interventions for surgical-site infection. See Video Abstract at http://links.lww.com/DCR/C88 . PREDICCIN MEJORADA DE LA INFECCIN DEL SITIO QUIRRGICO DESPUS DE LA CIRUGA COLORRECTAL MEDIANTE EL APRENDIZAJE AUTOMTICO: ANTECEDENTES:La infección del sitio quirúrgico es una fuente de morbilidad significativa después de la cirugía colorrectal. Los esfuerzos anteriores para desarrollar modelos que predijeran la infección del sitio quirúrgico han tenido una precisión limitada. El aprendizaje automático se ha mostrado prometedor en la predicción de los resultados posoperatorios mediante la identificación de patrones no lineales dentro de grandes conjuntos de datos.OBJETIVO:Intentamos utilizar el aprendizaje automático para desarrollar un modelo predictivo más preciso para las infecciones del sitio quirúrgico colorrectal.DISEÑO:Los pacientes que se sometieron a cirugía colorrectal se identificaron en la base de datos del Programa Nacional de Mejoramiento de la Calidad del Colegio Estadounidense de Cirujanos de los años 2012 a 2019 y se dividieron en conjuntos de capacitación, validación y prueba. Las técnicas de aprendizaje automático incluyeron conjunto aleatorio, aumento de gradiente y red neuronal artificial. También se creó un modelo de regresión logística. El rendimiento del modelo se evaluó utilizando el área bajo la curva característica operativa del receptor.CONFIGURACIÓN:Un conjunto de datos multicéntrico nacional.PACIENTES:Pacientes intervenidos de cirugía colorrectal.PRINCIPALES MEDIDAS DE RESULTADO:El resultado primario (infección del sitio quirúrgico) incluyó pacientes que experimentaron infecciones superficiales, profundas o del espacio de órganos del sitio quirúrgico.RESULTADOS:El conjunto de datos incluyó 275.152 pacientes después de la aplicación de los criterios de exclusión. El 10,7% de los pacientes presentó infección del sitio quirúrgico. La red neuronal artificial mostró el mejor rendimiento con el área bajo la curva característica operativa del receptor de 0,769 (IC del 95 %: 0,762 - 0,777), en comparación con 0,766 (IC del 95 %: 0,759 - 0,774) para el aumento de gradiente, 0,764 (IC del 95 %: 0,756 - 0,772) para conjunto aleatorio y 0,677 (IC 95% 0,669 - 0,685) para regresión logística. Para el modelo de red neuronal artificial, los predictores más fuertes de infección del sitio quirúrgico fueron la infección del sitio quirúrgico del espacio del órgano presente en el momento de la cirugía, el tiempo operatorio, la preparación intestinal con antibióticos orales y el abordaje quirúrgico.LIMITACIONES:No se realizó validación institucional local.CONCLUSIONES:Las técnicas de aprendizaje automático predicen infecciones del sitio quirúrgico colorrectal con mayor precisión que la regresión logística. Estas técnicas se pueden usar para identificar a los pacientes con mayor riesgo y para orientar las intervenciones preventivas para la infección del sitio quirúrgico. Consulte Video Resumen en http://links.lww.com/DCR/C88 . (Traducción-Dr Yolanda Colorado ).


Subject(s)
Colorectal Neoplasms , Colorectal Surgery , Humans , Colectomy/methods , Colorectal Neoplasms/surgery , Colorectal Surgery/adverse effects , Retrospective Studies , Surgical Wound Infection/diagnosis , Surgical Wound Infection/epidemiology , Surgical Wound Infection/etiology
18.
J Gastrointest Surg ; 26(11): 2342-2350, 2022 11.
Article in English | MEDLINE | ID: mdl-36070116

ABSTRACT

BACKGROUND: Readmission after colorectal surgery is common and often implies complications for patients and costs for hospitals. Previous works have created predictive models using logistic regression for this outcome but have shown limited accuracy. Machine learning has shown promise in improving predictions by identifying non-linear patterns in data. We sought to create a more accurate predictive model for readmission after colorectal surgery using machine learning. METHODS: Patients who underwent colorectal surgery were identified in the National Quality Improvement Program (NSQIP) database including years 2012-2019 and split into training, validation, and test sets. The primary outcome was readmission within 30 days of surgery. Three types of machine learning models were created, including random forest (RF), gradient boosting (XGB), and neural network (NN). A logistic regression (LR) model was also created for comparison. Model performance was evaluated using area under the receiver operating characteristic curve (AUROC). RESULTS: The dataset included 213,827 patients after application of exclusion criteria. A total of 23,083 (10.8%) of patients experienced readmission. NN obtained an AUROC of 0.751 (95% CI 0.743-0.759), compared with 0.684 (95% CI 0.676-0.693) for LR. RF and XGB performed similarly with AUROCs of 0.749 (95% CI 0.741-0.757) and 0.745 (95% CI 0.737-0.753) respectively. Ileus, index admission length of stay, organ-space surgical site infection present at time of surgery, and ostomy placement were identified as the most contributory variables. CONCLUSIONS: Machine learning approaches outperformed traditional statistical methods in the prediction of readmission after colorectal surgery. After external validation, this improved prediction model could be used to target interventions to reduce readmission rate.


Subject(s)
Colorectal Surgery , Patient Readmission , Humans , Machine Learning , Logistic Models , ROC Curve
19.
Int J Mol Sci ; 23(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35563124

ABSTRACT

Nuclear magnetic resonance (NMR) spectroscopy was used to monitor glutathione metabolism in alginate-encapsulated JM-1 hepatoma cells perfused with growth media containing [3,3'-13C2]-cystine. After 20 h of perfusion with labeled medium, the 13C NMR spectrum is dominated by the signal from the 13C-labeled glutathione. Once 13C-labeled, the high intensity of the glutathione resonance allows the acquisition of subsequent spectra in 1.2 min intervals. At this temporal resolution, the detailed kinetics of glutathione metabolism can be monitored as the thiol alkylating agent monobromobimane (mBBr) is added to the perfusate. The addition of a bolus dose of mBBr results in rapid diminution of the resonance for 13C-labeled glutathione due to a loss of this metabolite through alkylation by mBBr. As the glutathione resonance decreases, a new resonance due to the production of intracellular glutathione-bimane conjugate is detectable. After clearance of the mBBr dose from the cells, intracellular glutathione repletion is then observed by a restoration of the 13C-glutathione signal along with wash-out of the conjugate. These data demonstrate that standard NMR techniques can directly monitor intracellular processes such as glutathione depletion with a time resolution of approximately < 2 min.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Bioreactors , Bridged Bicyclo Compounds , Glutathione/metabolism , Humans , Rats
20.
J Gastrointest Surg ; 26(8): 1732-1742, 2022 08.
Article in English | MEDLINE | ID: mdl-35508684

ABSTRACT

BACKGROUND: Procedure-specific complications can have devastating consequences. Machine learning-based tools have the potential to outperform traditional statistical modeling in predicting their risk and guiding decision-making. We sought to develop and compare deep neural network (NN) models, a type of machine learning, to logistic regression (LR) for predicting anastomotic leak after colectomy, bile leak after hepatectomy, and pancreatic fistula after pancreaticoduodenectomy (PD). METHODS: The colectomy, hepatectomy, and PD National Surgical Quality Improvement Program (NSQIP) databases were analyzed. Each dataset was split into training, validation, and testing sets in a 60/20/20 ratio, with fivefold cross-validation. Models were created using NN and LR for each outcome. Models were evaluated primarily with area under the receiver operating characteristic curve (AUROC). RESULTS: A total of 197,488 patients were included for colectomy, 25,403 for hepatectomy, and 23,333 for PD. For anastomotic leak, AUROC for NN was 0.676 (95% 0.666-0.687), compared with 0.633 (95% CI 0.620-0.647) for LR. For bile leak, AUROC for NN was 0.750 (95% CI 0.739-0.761), compared with 0.722 (95% CI 0.698-0.746) for LR. For pancreatic fistula, AUROC for NN was 0.746 (95% CI 0.733-0.760), compared with 0.713 (95% CI 0.703-0.723) for LR. Variables related to intra-operative information, such as surgical approach, biliary reconstruction, and pancreatic gland texture were highly important for model predictions. DISCUSSION: Machine learning showed a marginal advantage over traditional statistical techniques in predicting procedure-specific outcomes. However, models that included intra-operative information performed better than those that did not, suggesting that NSQIP procedure-targeted datasets may be strengthened by including relevant intra-operative information.


Subject(s)
Anastomotic Leak , Pancreatic Fistula , Anastomotic Leak/etiology , Colectomy/adverse effects , Humans , Machine Learning , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...