Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Cell Rep ; 14(9): 2059-2067, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26923601

ABSTRACT

Deficiency of S6 kinase (S6K) extends the lifespan of multiple species, but the underlying mechanisms are unclear. To discover potential effectors of S6K-mediated longevity, we performed a proteomics analysis of long-lived rsks-1/S6K C. elegans mutants compared to wild-type animals. We identified the arginine kinase ARGK-1 as the most significantly enriched protein in rsks-1/S6K mutants. ARGK-1 is an ortholog of mammalian creatine kinase, which maintains cellular ATP levels. We found that argk-1 is possibly a selective effector of rsks-1/S6K-mediated longevity and that overexpression of ARGK-1 extends C. elegans lifespan, in part by activating the energy sensor AAK-2/AMPK. argk-1 is also required for the reduced body size and increased stress resistance observed in rsks-1/S6K mutants. Finally, creatine kinase levels are increased in the brains of S6K1 knockout mice. Our study identifies ARGK-1 as a longevity effector in C. elegans with reduced RSKS-1/S6K levels.


Subject(s)
Arginine Kinase/physiology , Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/physiology , Creatine Kinase/physiology , Longevity , Ribosomal Protein S6 Kinases, 70-kDa/physiology , AMP-Activated Protein Kinases/metabolism , Animals , Caenorhabditis elegans Proteins/metabolism , Enzyme Activation , Female , Male , Mice, Knockout , Neuroglia/enzymology , Protein Serine-Threonine Kinases/metabolism
3.
Elife ; 4: e08833, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26623667

ABSTRACT

Longevity mechanisms increase lifespan by counteracting the effects of aging. However, whether longevity mechanisms counteract the effects of aging continually throughout life, or whether they act during specific periods of life, preventing changes that precede mortality is unclear. Here, we uncover transcriptional drift, a phenomenon that describes how aging causes genes within functional groups to change expression in opposing directions. These changes cause a transcriptome-wide loss in mRNA stoichiometry and loss of co-expression patterns in aging animals, as compared to young adults. Using Caenorhabditis elegans as a model, we show that extending lifespan by inhibiting serotonergic signals by the antidepressant mianserin attenuates transcriptional drift, allowing the preservation of a younger transcriptome into an older age. Our data are consistent with a model in which inhibition of serotonergic signals slows age-dependent physiological decline and the associated rise in mortality levels exclusively in young adults, thereby postponing the onset of major mortality.


Subject(s)
Aging , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Gene Expression Regulation/drug effects , Longevity/drug effects , Serotonin Antagonists/administration & dosage , Transcription, Genetic , Animals , Gene Expression Profiling , Mianserin/administration & dosage
4.
Aging Cell ; 14(6): 971-81, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26255886

ABSTRACT

Oxidative stress has long been associated with aging and has recently been linked to psychiatric disorders, including psychosis and depression. We identified multiple antipsychotics and antidepressants that extend Caenorhabditis elegans lifespan and protect the animal from oxidative stress. Here, we report that atypical antidepressants activate a neuronal mechanism that regulates the response to oxidative stress throughout the animal. While the activation of the oxidative stress response by atypical antidepressants depends on synaptic transmission, the activation by reactive oxygen species does not. Lifespan extension by atypical antidepressants depends on the neuronal oxidative stress response activation mechanism. Neuronal regulation of the oxidative stress response is likely to have evolved as a survival mechanism to protect the organism from oxidative stress, upon detection of adverse or dangerous conditions by the nervous system.


Subject(s)
Aging/drug effects , Antidepressive Agents, Second-Generation/pharmacology , Caenorhabditis elegans/physiology , Life Expectancy , Longevity/drug effects , Oxidative Stress/drug effects , Aging/physiology , Animals , Caenorhabditis elegans Proteins/metabolism , Catalase/metabolism , Fluoxetine/pharmacology , Histamine H1 Antagonists/pharmacology , Longevity/physiology , Mianserin/analogs & derivatives , Mianserin/pharmacology , Mirtazapine , Peroxiredoxins/metabolism , Reactive Oxygen Species/metabolism , Serotonin Antagonists/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Superoxide Dismutase/metabolism , Synaptic Transmission/drug effects
5.
Genetics ; 200(2): 443-54, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25903497

ABSTRACT

Caenorhabditis elegans has emerged as a powerful model to study the genetics of feeding, food-related behaviors, and metabolism. Despite the many advantages of C. elegans as a model organism, direct measurement of its bacterial food intake remains challenging. Here, we describe two complementary methods that measure the food intake of C. elegans. The first method is a microtiter plate-based bacterial clearing assay that measures food intake by quantifying the change in the optical density of bacteria over time. The second method, termed pulse feeding, measures the absorption of food by tracking de novo protein synthesis using a novel metabolic pulse-labeling strategy. Using the bacterial clearance assay, we compare the bacterial food intake of various C. elegans strains and show that long-lived eat mutants eat substantially more than previous estimates. To demonstrate the applicability of the pulse-feeding assay, we compare the assimilation of food for two C. elegans strains in response to serotonin. We show that serotonin-increased feeding leads to increased protein synthesis in a SER-7-dependent manner, including proteins known to promote aging. Protein content in the food has recently emerged as critical factor in determining how food composition affects aging and health. The pulse-feeding assay, by measuring de novo protein synthesis, represents an ideal method to unequivocally establish how the composition of food dictates protein synthesis. In combination, these two assays provide new and powerful tools for C. elegans research to investigate feeding and how food intake affects the proteome and thus the physiology and health of an organism.


Subject(s)
Animal Feed , Caenorhabditis elegans/physiology , Feeding Behavior , Animals , Body Size , Mass Spectrometry , Mutation , Protein Biosynthesis/drug effects , Serotonin/metabolism , Serotonin/pharmacology
6.
Front Genet ; 6: 77, 2015.
Article in English | MEDLINE | ID: mdl-25784926

ABSTRACT

Recent progress in the field of aging has resulted in ever increasing numbers of compounds that extend lifespan in Caenorhabditis elegans. Lifespan extending compounds include metabolites and synthetic compounds, as well as natural products. For many of these compounds, mammalian pharmacology is known, and for some the actual targets have been experimentally identified. In this review, we explore the data available in C. elegans to provide an overview of which pharmacological classes have potential for identification of further compounds that extend lifespan.

SELECTION OF CITATIONS
SEARCH DETAIL
...