Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
iScience ; 26(1): 105837, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36624835

ABSTRACT

Some types of glia play an active role in neuronal signaling by modifying their activity although little is known about their role in sensory information signaling at the receptor level. In this research, we report a functional role for the glia that surround the soma of the olfactory receptor neurons (OSNs) in adult Drosophila. Specific genetic modifications have been targeted to this cell type to obtain live individuals who are tested for olfactory preference and display changes both increasing and reducing sensitivity. A closer look at the antenna by Ca2+ imaging shows that odor activates the OSNs, which subsequently produce an opposite and smaller effect in the glia that partially counterbalances neuronal activation. Therefore, these glia may play a dual role in preventing excessive activation of the OSNs at high odorant concentrations and tuning the chemosensory window for the individual according to the network structure in the receptor organ.

2.
Sci Rep ; 12(1): 14749, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042338

ABSTRACT

The Drosophila Ntan1 gene encodes an N-terminal asparagine amidohydrolase that we show is highly conserved throughout evolution. Protein isoforms share more than 72% of similarity with their human counterparts. At the cellular level, this gene regulates the type of glial cell growth in Drosophila larvae by its different expression levels. The Drosophila Ntan1 gene has 4 transcripts that encode 2 protein isoforms. Here we describe that although this gene is expressed at all developmental stages and adult organs tested (eye, antennae and brain) there are some transcript-dependent specificities. Therefore, both quantitative and qualitative cues could account for gene function. However, widespread developmental stage and organ-dependent expression could be masking cell-specific constraints that can be explored in Drosophila by using Gal4 drivers. We report a new genetic driver within this gene, Mz317-Gal4, that recapitulates the Ntan1 gene expression pattern in adults. It shows specific expression for perineural glia in the olfactory organs but mixed expression with some neurons in the adult brain. Memory and social behavior disturbances in mice and cancer and schizophrenia in humans have been linked to the Ntan1 gene. Therefore, these new tools in Drosophila may contribute to our understanding of the cellular basis of these alterations.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Humans , Mice , Neuroglia/metabolism , Neurons/metabolism , Phenotype
3.
Insects ; 13(8)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35893017

ABSTRACT

Optogenetics enables the alteration of neural activity using genetically targeted expression of light activated proteins for studying behavioral circuits in several species including Drosophila. The main idea behind this approach is to replace the native behavioral stimulus by the light-induced electrical activation of different points of the circuit. Therefore, its effects on subsequent steps of the circuit or on the final behavior can be analyzed. However, the use of optogenetics to dissect the receptor elements of the adult olfactory behavior presents a challenge due to one additional factor: Most odorants elicit attraction or avoidance depending on their concentration; this complicates the representative replacement of odor activation of olfactory sensory neurons (OSNs) by light. Here, we explore a dual excitation model where the subject is responding to odors while the OSNs are optogenetically activated. Thereby, we can assess if and how the olfactory behavior is modified. We measure the effects of light excitation on the response to several odorant concentrations. The dose-response curve of these flies still depends on odor concentration but with reduced sensitivity compared to olfactory stimulation alone. These results are consistent with behavioral tests performed with a background odor and suggest an additive effect of light and odor excitation on OSNs.

4.
Front Cell Neurosci ; 12: 253, 2018.
Article in English | MEDLINE | ID: mdl-30214396

ABSTRACT

Most insect species rely on the detection of olfactory cues for critical behaviors for the survival of the species, e.g., finding food, suitable mates and appropriate egg-laying sites. Although insects show a diverse array of molecular receptors dedicated to the detection of sensory cues, two main types of molecular receptors have been described as responsible for olfactory reception in Drosophila, the odorant receptors (ORs) and the ionotropic receptors (IRs). Although both receptor families share the role of being the first chemosensors in the insect olfactory system, they show distinct evolutionary origins and several distinct structural and functional characteristics. While ORs are seven-transmembrane-domain receptor proteins, IRs are related to the ionotropic glutamate receptor (iGluR) family. Both types of receptors are expressed on the olfactory sensory neurons (OSNs) of the main olfactory organ, the antenna, but they are housed in different types of sensilla, IRs in coeloconic sensilla and ORs in basiconic and trichoid sensilla. More importantly, from the functional point of view, they display different odorant specificity profiles. Research advances in the last decade have improved our understanding of the molecular basis, evolution and functional roles of these two families, but there are still controversies and unsolved key questions that remain to be answered. Here, we present an updated review on the advances of the genetic basis, evolution, structure, functional response and regulation of both types of chemosensory receptors. We use a comparative approach to highlight the similarities and differences among them. Moreover, we will discuss major open questions in the field of olfactory reception in insects. A comprehensive analysis of the structural and functional convergence and divergence of both types of receptors will help in elucidating the molecular basis of the function and regulation of chemoreception in insects.

5.
Nat Commun ; 7: 11866, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27302750

ABSTRACT

CD36 transmembrane proteins have diverse roles in lipid uptake, cell adhesion and pathogen sensing. Despite numerous in vitro studies, how they act in native cellular contexts is poorly understood. A Drosophila CD36 homologue, sensory neuron membrane protein 1 (SNMP1), was previously shown to facilitate detection of lipid-derived pheromones by their cognate receptors in olfactory cilia. Here we investigate how SNMP1 functions in vivo. Structure-activity dissection demonstrates that SNMP1's ectodomain is essential, but intracellular and transmembrane domains dispensable, for cilia localization and pheromone-evoked responses. SNMP1 can be substituted by mammalian CD36, whose ectodomain can interact with insect pheromones. Homology modelling, using the mammalian LIMP-2 structure as template, reveals a putative tunnel in the SNMP1 ectodomain that is sufficiently large to accommodate pheromone molecules. Amino-acid substitutions predicted to block this tunnel diminish pheromone sensitivity. We propose a model in which SNMP1 funnels hydrophobic pheromones from the extracellular fluid to integral membrane receptors.


Subject(s)
CD36 Antigens/chemistry , CD36 Antigens/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila/metabolism , Pheromones/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Animals , Animals, Genetically Modified , Conserved Sequence/genetics , Disulfides/metabolism , Evolution, Molecular , Glycosylation , Models, Molecular , Protein Domains , Protein Transport , Receptors, Pheromone , Structural Homology, Protein , Structure-Activity Relationship
7.
EMBO Rep ; 14(10): 874-83, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24030282

ABSTRACT

Sex pheromones provide an important means of communication to unite individuals for successful reproduction. Although sex pheromones are highly diverse across animals, these signals fulfil common fundamental roles in enabling identification of a mating partner of the opposite sex, the appropriate species and of optimal fecundity. In this review, we synthesize both classic and recent investigations on sex pheromones in a range of species, spanning nematode worms, insects and mammals. These studies reveal comparable strategies in how these chemical signals are produced, detected and processed in the brain to regulate sexual behaviours. Elucidation of sex pheromone communication mechanisms both defines outstanding models to understand the molecular and neuronal basis of chemosensory behaviours, and reveals how similar evolutionary selection pressures yield convergent solutions in distinct animal nervous systems.


Subject(s)
Sex Attractants/metabolism , Sexual Behavior, Animal , Animals , Evolution, Molecular , Female , Male , Receptors, G-Protein-Coupled/metabolism , Sex Attractants/chemistry , Sex Attractants/genetics , Signal Transduction
8.
Anat Rec (Hoboken) ; 296(9): 1477-88, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23904114

ABSTRACT

The olfactory system of Drosophila has become an attractive and simple model to investigate olfaction because it follows the same organizational principles of vertebrates, and the results can be directly applied to other insects with economic and sanitary relevance. Here, we review the structural elements of the Drosophila olfactory reception organs at the level of the cells and molecules involved. This article is intended to reflect the structural basis underlying the functional variability of the detection of an olfactory universe composed of thousands of odors. At the genetic level, we further detail the genes and transcription factors (TF) that determine the structural variability. The fly's olfactory receptor organs are the third antennal segments and the maxillary palps, which are covered with sensory hairs called sensilla. These sensilla house the odorant receptor neurons (ORNs) that express one or few odorant receptors in a stereotyped pattern regulated by combinations of TF. Also, perireceptor events, such as odor molecules transport to their receptors, are carried out by odorant binding proteins. In addition, the rapid odorant inactivation to preclude saturation of the system occurs by biotransformation and detoxification enzymes. These additional events take place in the lymph that surrounds the ORNs. We include some data on ionotropic and metabotropic olfactory transduction, although this issue is still under debate in Drosophila.


Subject(s)
Arthropod Antennae/innervation , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Odorants , Olfactory Pathways/metabolism , Olfactory Receptor Neurons/metabolism , Receptors, Odorant/metabolism , Sensilla/innervation , Smell , Age Factors , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/genetics , Lymph/metabolism , Receptors, Odorant/genetics , Signal Transduction , Smell/genetics
9.
PLoS Biol ; 11(4): e1001546, 2013.
Article in English | MEDLINE | ID: mdl-23637570

ABSTRACT

Pheromones form an essential chemical language of intraspecific communication in many animals. How olfactory systems recognize pheromonal signals with both sensitivity and specificity is not well understood. An important in vivo paradigm for this process is the detection mechanism of the sex pheromone (Z)-11-octadecenyl acetate (cis-vaccenyl acetate [cVA]) in Drosophila melanogaster. cVA-evoked neuronal activation requires a secreted odorant binding protein, LUSH, the CD36-related transmembrane protein SNMP, and the odorant receptor OR67d. Crystallographic analysis has revealed that cVA-bound LUSH is conformationally distinct from apo (unliganded) LUSH. Recombinantly expressed mutant versions of LUSH predicted to enhance or diminish these structural changes produce corresponding alterations in spontaneous and/or cVA-evoked activity when infused into olfactory sensilla, leading to a model in which the ligand for pheromone receptors is not free cVA, but LUSH that is "conformationally activated" upon cVA binding. Here we present evidence that contradicts this model. First, we demonstrate that the same LUSH mutants expressed transgenically affect neither basal nor pheromone-evoked activity. Second, we compare the structures of apo LUSH, cVA/LUSH, and complexes of LUSH with non-pheromonal ligands and find no conformational property of cVA/LUSH that can explain its proposed unique activated state. Finally, we show that high concentrations of cVA can induce neuronal activity in the absence of LUSH, but not SNMP or OR67d. Our findings are not consistent with the model that the cVA/LUSH complex acts as the pheromone ligand, and suggest that pheromone molecules alone directly activate neuronal receptors.


Subject(s)
Drosophila melanogaster/physiology , Neurons/physiology , Receptors, Odorant/metabolism , Acetates , Action Potentials , Amino Acid Substitution , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Ligands , Male , Mutagenesis, Site-Directed , Oleic Acids/physiology , Pheromones/physiology , Protein Conformation , Receptors, Cell Surface/metabolism , Receptors, Odorant/chemistry , Receptors, Odorant/genetics , Receptors, Pheromone , Sex Attractants/physiology , Structural Homology, Protein
10.
Chem Senses ; 35(3): 183-93, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20047983

ABSTRACT

In many species, olfactory transduction is triggered by odorant molecules that interact with olfactory receptors coupled to heterotrimeric G-proteins. The role of G-protein-linked transduction in the olfaction of Drosophila is currently under study. Here, we supply a thorough description of the expression in the olfactory receptor organs (antennae and maxillary palps) of all known Drosophila melanogaster genes that encode for G-proteins. Using RT-polymerase chain reaction, we analyzed 6 Galpha (G(s), G(i), G(q), G(o), G(f), and concertina), 3 Gbeta (G(beta5), G(beta13F), and G(beta76C)), and 2 Ggamma genes (G(gamma1) and G(gamma30A)). We found that all Galpha protein-encoding genes showed expression in both olfactory organs, but G(f) mRNA was not detected in palps. Moreover, all the Gbeta and Ggamma genes are expressed in antennae and palps, except for G(beta76C). To gain insight into the hypothesis of different G-protein subunits mediating differential signaling in olfactory receptor neurons (ORNs), we performed immunohistochemical studies to observe the expression of several Galpha and Gbeta proteins. We found that Gs, Gi, Gq, and G(beta13F) subunits displayed generalized expression in the antennal tissue, including ORNs support cells and glial cells. Finally, complete coexpression was found between Gi and Gq, which are mediators of the cyclic adenosine monophosphate and IP3 transduction cascades, respectively.


Subject(s)
Drosophila melanogaster/metabolism , GTP-Binding Protein alpha Subunits/metabolism , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Animals , Drosophila melanogaster/genetics , GTP-Binding Protein alpha Subunits/classification , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein beta Subunits/classification , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein gamma Subunits/classification , GTP-Binding Protein gamma Subunits/genetics , Gene Expression , Immunohistochemistry , Olfactory Receptor Neurons/metabolism
11.
Cell ; 136(1): 149-62, 2009 Jan 09.
Article in English | MEDLINE | ID: mdl-19135896

ABSTRACT

Ionotropic glutamate receptors (iGluRs) mediate neuronal communication at synapses throughout vertebrate and invertebrate nervous systems. We have characterized a family of iGluR-related genes in Drosophila, which we name ionotropic receptors (IRs). These receptors do not belong to the well-described kainate, AMPA, or NMDA classes of iGluRs, and they have divergent ligand-binding domains that lack their characteristic glutamate-interacting residues. IRs are expressed in a combinatorial fashion in sensory neurons that respond to many distinct odors but do not express either insect odorant receptors (ORs) or gustatory receptors (GRs). IR proteins accumulate in sensory dendrites and not at synapses. Misexpression of IRs in different olfactory neurons is sufficient to confer ectopic odor responsiveness. Together, these results lead us to propose that the IRs comprise a novel family of chemosensory receptors. Conservation of IR/iGluR-related proteins in bacteria, plants, and animals suggests that this receptor family represents an evolutionarily ancient mechanism for sensing both internal and external chemical cues.


Subject(s)
Drosophila/chemistry , Drosophila/metabolism , Receptors, Glutamate/metabolism , Receptors, Odorant/metabolism , Amino Acid Sequence , Animals , Molecular Sequence Data , Receptors, Glutamate/chemistry , Receptors, Odorant/chemistry , Sequence Alignment
12.
Genesis ; 46(6): 283-8, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18543310

ABSTRACT

Mosaics have been used in Drosophila to study development and to generate mutant structures when a mutant allele is homozygous lethal. New approaches of directed somatic recombination based on FRT/FLP methods, have increased mosaicism rates but likewise multiple clones in the same individual appeared more frequently. Production of single clones could be essential for developmental studies; however, for cell-autonomous gene function studies only the presence of homozygous cells for the target recessive allele is relevant. Herein, we report the number and extension of antennal mosaics generated by the MARCM system at different ages. This information is directed to obtain the appropriated mosaic type for the intended application. By applying heat shock at 10 different developmental stages from 0-12 h to 6-7 days after egg laying, more than 50% of mosaics were obtained from 5,028 adults. Single recombinant clones appeared mainly at early stages while massive recombinant areas were observed with late treatments.


Subject(s)
Animal Structures/embryology , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Genetic Markers , Mosaicism , Alleles , Animal Structures/growth & development , Animals , Drosophila melanogaster/growth & development , Embryo, Nonmammalian , Homozygote , Mutation
13.
Genetica ; 128(1-3): 359-72, 2006.
Article in English | MEDLINE | ID: mdl-17028964

ABSTRACT

Enhancer trap P-element insertion has become a common method for generating new mutations in Drosophila melanogaster. When this method is used to isolate mutants for quantitative traits, an appropriate control must be established to define normal and mutant phenotypes. Considering that enhancer-trap lines are generated by crossing several strains, usually with no homogeneous genetic background, no clear control strain can be selected. Previous reports tried to overcome this problem by homogenizing the genetic background of the original lines. However, this is not the most common scenario, especially when functional phenotypes are studied in previously generated lines. Without such caution, is it possible to identify functional mutants among P-element insertion lines? We tested this for olfactory preference, a quantitative trait. Using as control measurement the average phenotype of 30 simultaneously generated P-element insertion lines with preferential reporter-gene expression in olfactory reception organs, we found that 25 of the lines exhibited mutant phenotypes in response to one or several of 5 tested odorants. Additional tests showed that the efficiency of the method for detecting olfactory mutations exceeded 60% even for such a small number of tested odorants. According to these results this approach greatly facilitates the identification of putative abnormal phenotypes, which must be extensively confirmed afterwards.


Subject(s)
DNA Transposable Elements/genetics , Drosophila melanogaster/genetics , Genes, Insect , Animals , Drosophila melanogaster/physiology , Female , Genes, Reporter , Genetic Techniques , In Situ Hybridization , Male , Mutation , Odorants , Phenotype , Quantitative Trait, Heritable , Smell/genetics
14.
Behav Genet ; 36(2): 309-21, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16463070

ABSTRACT

The Inositol 1,4,5-triphosphate (IP3) route is one of the two main transduction cascades that mediate olfactory reception in Drosophila melanogaster. The activity of IP3 kinase1 reduces the levels of this substrate by phosphorylation into inositol 1,3,4,5-tetrakiphosphate (IP4). We show here that the gene is expressed in olfactory sensory organs as well as in the rest of the head. To evaluate in vivo the olfactory functional effects of up-regulating IP3K1, individuals with directed genetic changes at the reception level only were generated using the UAS/Gal4 method. In this report, we described the consequences in olfactory perception of overexpressing the IP3Kinase1 gene at eight different olfactory receptor-neuron subsets. Six out of the eight studied Gal-4/UAS-IP3K1 hybrids displayed abnormal behavioral responses to ethyl acetate, acetone, ethanol or propionaldehyde. Specific behavioral defects corresponded to the particular neuronal olfactory profile. These data confirm the role of the IP3kinase1 gene, and consequently the IP3 transduction cascade, in mediating olfactory information at the reception level.


Subject(s)
Inositol Phosphates/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Smell/genetics , Animals , Chemoreceptor Cells/physiology , Drosophila melanogaster , Gene Expression Regulation/physiology , Olfactory Receptor Neurons/physiology , Signal Transduction/genetics
15.
Behav Genet ; 34(4): 395-406, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15082937

ABSTRACT

Two main second messenger systems depending on IP3 and cAMP have been related to olfaction in vertebrates as well as invertebrates. In Drosophila melanogaster, the availability of mutations affecting one or the other pathway (rdgB and norpA or rut and dnc, respectively) allowed showing of abnormal olfactory behavior phenotypes associated with olfactory transduction in complete living animals. However, because rut and dnc genes showed ubiquitous expression at olfactory receptor organs and some brain locations, the mutant behavior cannot be assigned exclusively to olfactory reception. In this report, overexpression of the dnc gene directed specifically to different olfactory receptor neuron subsets was used to produce dominant mutants. Abnormal olfactory behavior was found in 62.5% of the 8 lines studied in response to some odorants, depending on the affected neuronal subset. These results suggest that even for a small number of tested odorants (5), cAMP cascade is involved in olfactory reception to an important extent.


Subject(s)
Cyclic AMP/physiology , Drosophila melanogaster/physiology , Signal Transduction/physiology , Animals , Animals, Genetically Modified , Choice Behavior , Crosses, Genetic , DNA-Binding Proteins , Drosophila melanogaster/genetics , Female , Genes, Reporter , Hybridization, Genetic , Male , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...