Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Appl Physiol ; 124(7): 2209-2223, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38441691

ABSTRACT

INTRODUCTION: Strength training mitigates the age-related decline in strength and muscle activation but limited evidence exists on specific motor pathway adaptations. METHODS: Eleven young (22-34 years) and ten older (66-80 years) adults underwent five testing sessions where lumbar-evoked potentials (LEPs) and motor-evoked potentials (MEPs) were measured during 20 and 60% of maximum voluntary contraction (MVC). Ten stimulations, randomly delivered, targeted 25% of maximum compound action potential for LEPs and 120, 140, and 160% of active motor threshold (aMT) for MEPs. The 7-week whole-body resistance training intervention included five exercises, e.g., knee extension (5 sets) and leg press (3 sets), performed twice weekly and was followed by 4 weeks of detraining. RESULTS: Young had higher MVC (~ 63 N·m, p = 0.006), 1-RM (~ 50 kg, p = 0.002), and lower aMT (~ 9%, p = 0.030) than older adults at baseline. Young increased 1-RM (+ 18 kg, p < 0.001), skeletal muscle mass (SMM) (+ 0.9 kg, p = 0.009), and LEP amplitude (+ 0.174, p < 0.001) during 20% MVC. Older adults increased MVC (+ 13 N·m, p = 0.014), however, they experienced decreased LEP amplitude (- 0.241, p < 0.001) during 20% MVC and MEP amplitude reductions at 120% (- 0.157, p = 0.034), 140% (- 0.196, p = 0.026), and 160% (- 0.210, p = 0.006) aMT during 60% MVC trials. After detraining, young and older adults decreased 1-RM, while young adults decreased SMM. CONCLUSION: Higher aMT and MEP amplitude in older adults were concomitant with lower baseline strength. Training increased strength in both groups, but divergent modifications in cortico-spinal activity occurred. Results suggest that the primary locus of adaptation occurs at the spinal level.


Subject(s)
Evoked Potentials, Motor , Quadriceps Muscle , Resistance Training , Humans , Resistance Training/methods , Aged , Male , Adult , Female , Evoked Potentials, Motor/physiology , Quadriceps Muscle/physiology , Aged, 80 and over , Aging/physiology , Adaptation, Physiological/physiology , Young Adult , Muscle Strength/physiology , Motor Cortex/physiology , Muscle Contraction/physiology , Spinal Cord/physiology
2.
Eur J Appl Physiol ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38032387

ABSTRACT

PURPOSE: Reduced spinal excitability during the transcranial magnetic stimulation (TMS) silent period (SP) has recently been shown to last longer than previously thought in the upper limbs, as assessed via spinal electrical stimulation. Further, there is reason to expect that contraction intensity affects the duration of the reduced spinal excitability. METHODS: This study investigated spinal excitability at different time delays within the TMS-evoked SP in m.rectus femoris. Fifteen participants performed non-fatiguing isometric knee extensions at 25%, 50% and 75% of maximum voluntary contraction (MVC). Lumbar stimulation (LS) induced a lumbar-evoked potential (LEP) of 50% resting M-max. TMS stimulator output induced a SP lasting ~ 200 ms. In each contraction, a LEP (unconditioned) was delivered ~ 2-3 s prior to TMS, which was followed by a second LEP (conditioned) 60, 90, 120 or 150 ms into the silent period. Five contractions were performed at each contraction intensity and for each time delay in random order. RESULTS: Compared to the unconditioned LEP, the conditioned LEP amplitude was reduced (- 28 ± 34%, p = 0.007) only at 60 ms during 25% of MVC. Conditioned LEP amplitudes during 50% and 75% of MVC were reduced at 60 ms (- 37 ± 47%, p = 0.009 and - 37 ± 42%, p = 0.005, respectively) and 150 ms (- 30% ± 37%, p = 0.0083 and - 37 ± 43%, p = 0.005, respectively). LEP amplitude at 90 ms during 50% of MVC also reduced (- 25 ± 35%, p = 0.013). CONCLUSION: Reduced spinal excitability is extended during 50% and 75% of MVC. In future, paired TMS-LS could be a potential method to understand changes in spinal excitability during SP (at different contraction intensities) when testing various neurophysiological phenomena.

3.
Front Neurosci ; 17: 1239982, 2023.
Article in English | MEDLINE | ID: mdl-37849888

ABSTRACT

Single-pulse Transcranial Magnetic Stimulation (TMS) and, very recently, lumbar stimulation (LS) have been used to measure cortico-spinal excitability from various interventions using maximal or submaximal contractions in the lower limbs. However, reliability studies have overlooked a wide range of contraction intensities for MEPs, and no reliability data is available for LEPs. This study investigated the reliability of motor evoked potentials and lumbar evoked potentials at different stimulation intensities and contraction levels in m.rectus femoris. Twenty-two participants performed non-fatiguing isometric knee extensions at 20 and 60% of maximum voluntary contraction (MVC). LS induced a lumbar-evoked potential (LEP) of 25 and 50% resting maximal compound action potential (M-max). TMS stimulator output was adjusted to 120, 140, and 160% of active motor threshold (aMT). In each contraction, a single MEP or LEP was delivered. Ten contractions were performed at each stimulator intensity and contraction level in random order. Moderate-to-good reliability was found when LEP was normalized to M-max/Root Mean Square in all conditions (ICC:0.74-0.85). Excellent reliability was found when MEP was normalized to Mmax for all conditions (ICC > 0.90) at 60% of MVC. Good reliability was found for the rest of the TMS conditions. Moderate-to-good reliability was found for silent period (SP) elicited by LS (ICC: 0.71-0.83). Good-to-excellent reliability was found for SP elicited by TMS (ICC > 0.82). MEPs and LEPs elicited in m.rectus femoris appear to be reliable to assess changes at different segments of the cortico-spinal tract during different contraction levels and stimulator output intensities. Furthermore, the TMS- and LS- elicited SP was a reliable tool considered to reflect inhibitory processes at spinal and cortical levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...