Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
G3 (Bethesda) ; 14(5)2024 05 07.
Article in English | MEDLINE | ID: mdl-38412549

ABSTRACT

Alzheimer's disease is the main cause of aging-associated dementia, for which there is no effective treatment. In this work, we reanalyze the information of a previous genome wide association study, using a new pipeline design to identify novel potential drugs. With this approach, ribonucleoside-diphosphate reductase gene (RRM2B) emerged as a candidate target and its inhibitor, 2', 2'-difluoro 2'deoxycytidine (gemcitabine), as a potential pharmaceutical drug against Alzheimer's disease. We functionally verified the effect of inhibiting the RRM2B homolog, rnr-2, in an Alzheimer's model of Caenorhabditis elegans, which accumulates human Aß1-42 peptide to an irreversible paralysis. RNA interference against rnr-2 and also treatment with 200 ng/ml of gemcitabine, showed an improvement of the phenotype. Gemcitabine treatment increased the intracellular ATP level 3.03 times, which may point to its mechanism of action. Gemcitabine has been extensively used in humans for cancer treatment but at higher concentrations. The 200 ng/ml concentration did not exert a significant effect over cell cycle, or affected cell viability when assayed in the microglia N13 cell line. Thus, the inhibitory drug of the RRM2B activity could be of potential use to treat Alzheimer's disease and particularly gemcitabine might be considered as a promising candidate to be repurposed for its treatment.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans , Deoxycytidine , Disease Models, Animal , Caenorhabditis elegans/drug effects , Alzheimer Disease/drug therapy , Animals , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Amyloid beta-Peptides/metabolism , Humans , Gemcitabine , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleotide Reductases/antagonists & inhibitors , Ribonucleotide Reductases/metabolism , Adenosine Triphosphate/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , RNA Interference
3.
PLoS One ; 13(3): e0193614, 2018.
Article in English | MEDLINE | ID: mdl-29518122

ABSTRACT

Previous reports have proposed that personality may have played a role on human Out-Of-Africa migration, pinpointing some genetic variants that were positively selected in the migrating populations. In this work, we discuss the role of a common copy-number variant within the SIRPB1 gene, recently associated with impulsive behavior, in the human Out-Of-Africa migration. With the analysis of the variant distribution across forty-two different populations, we found that the SIRPB1 haplotype containing duplicated allele significantly correlated with human migratory distance, being one of the few examples of positively selected loci found across the human world colonization. Circular Chromosome Conformation Capture (4C-seq) experiments from the SIRPB1 promoter revealed important 3D modifications in the locus depending on the presence or absence of the duplication variant. In addition, a 3' enhancer showed neural activity in transgenic models, suggesting that the presence of the CNV may compromise the expression of SIRPB1 in the central nervous system, paving the way to construct a molecular explanation of the SIRPB1 variants role in human migration.


Subject(s)
DNA Copy Number Variations , Genetic Drift , Human Migration , Receptors, Cell Surface/genetics , Africa , Animals , Animals, Genetically Modified , Central Nervous System/metabolism , Chromatin/metabolism , Epigenesis, Genetic , Gene Expression , Gene Frequency , Genetic Association Studies , Haplotypes , Humans , Promoter Regions, Genetic , Racial Groups/genetics , Receptors, Cell Surface/metabolism , Zebrafish
4.
Nat Genet ; 48(3): 336-41, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26829752

ABSTRACT

The HoxA and HoxD gene clusters of jawed vertebrates are organized into bipartite three-dimensional chromatin structures that separate long-range regulatory inputs coming from the anterior and posterior Hox-neighboring regions. This architecture is instrumental in allowing vertebrate Hox genes to pattern disparate parts of the body, including limbs. Almost nothing is known about how these three-dimensional topologies originated. Here we perform extensive 4C-seq profiling of the Hox cluster in embryos of amphioxus, an invertebrate chordate. We find that, in contrast to the architecture in vertebrates, the amphioxus Hox cluster is organized into a single chromatin interaction domain that includes long-range contacts mostly from the anterior side, bringing distant cis-regulatory elements into contact with Hox genes. We infer that the vertebrate Hox bipartite regulatory system is an evolutionary novelty generated by combining ancient long-range regulatory contacts from DNA in the anterior Hox neighborhood with new regulatory inputs from the posterior side.


Subject(s)
Body Patterning/genetics , Evolution, Molecular , Homeodomain Proteins/biosynthesis , Lancelets/genetics , Animals , Chromatin/genetics , Conserved Sequence/genetics , Extremities/growth & development , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Lancelets/growth & development , Multigene Family , Phylogeny , Vertebrates/genetics , Vertebrates/growth & development
5.
Proc Natl Acad Sci U S A ; 112(24): 7542-7, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26034287

ABSTRACT

Increasing evidence in the last years indicates that the vast amount of regulatory information contained in mammalian genomes is organized in precise 3D chromatin structures. However, the impact of this spatial chromatin organization on gene expression and its degree of evolutionary conservation is still poorly understood. The Six homeobox genes are essential developmental regulators organized in gene clusters conserved during evolution. Here, we reveal that the Six clusters share a deeply evolutionarily conserved 3D chromatin organization that predates the Cambrian explosion. This chromatin architecture generates two largely independent regulatory landscapes (RLs) contained in two adjacent topological associating domains (TADs). By disrupting the conserved TAD border in one of the zebrafish Six clusters, we demonstrate that this border is critical for preventing competition between promoters and enhancers located in separated RLs, thereby generating different expression patterns in genes located in close genomic proximity. Moreover, evolutionary comparison of Six-associated TAD borders reveals the presence of CCCTC-binding factor (CTCF) sites with diverging orientations in all studied deuterostomes. Genome-wide examination of mammalian HiC data reveals that this conserved CTCF configuration is a general signature of TAD borders, underscoring that common organizational principles underlie TAD compartmentalization in deuterostome evolution.


Subject(s)
Evolution, Molecular , Repressor Proteins/chemistry , Repressor Proteins/genetics , Animals , Animals, Genetically Modified , Base Sequence , Binding Sites/genetics , CCCTC-Binding Factor , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Conserved Sequence , DNA/genetics , Enhancer Elements, Genetic , Genes, Homeobox , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mice , Models, Genetic , Multigene Family , Promoter Regions, Genetic , Protein Interaction Domains and Motifs , Repressor Proteins/metabolism , Strongylocentrotus purpuratus/genetics , Zebrafish/genetics
6.
Dev Dyn ; 244(5): 693-702, 2015 May.
Article in English | MEDLINE | ID: mdl-25728805

ABSTRACT

BACKGROUND: SPARC/osteonectin is an evolutionarily conserved matricellular protein that modulates cell-matrix interaction and cell function. In all vertebrates, SPARC is dynamically expressed during embryogenesis. However, the precise function of SPARC and the regulatory elements required for its expression in particular during early embryogenesis are largely unknown. RESULTS: The present study was undertaken to explore the molecular mechanisms that regulate sparc gene expression by in vivo functional characterization of the sparc promoter and identification of possible putative regulatory elements that govern basal promoter activity. We report here transient expression analyses of eGFP expression from transgenic zebrafish containing a Sparc-iTol2-eGFP-BAC and/or 7.25 kb-sparc-Tol2-eGFP constructs. eGFP expression was specifically found in the notochord, otic vesicle, fin fold, intermediate cell mass, and olfactory placode of BAC and Tol2 transposon vectors injected embryos. Deletion analysis revealed that promoter activity resides in the unique 5'-untranslated intronic region. Computer-based analysis revealed a putative CpG island immediately proximal to the translation start site within the intron sequence. Global inhibition of methylation with 5-Aza-2-deoxycytidine promoted sparc expression in association with decreasing CpG methylation. CONCLUSIONS: Taken together, these data identify a contributory role for DNA methylation in regulating sparc expression in zebrafish embryogenesis.


Subject(s)
DNA Methylation/physiology , Embryo, Nonmammalian/embryology , Gene Expression Regulation, Developmental/physiology , Osteonectin/biosynthesis , Promoter Regions, Genetic/physiology , Zebrafish/embryology , Animals , Animals, Genetically Modified , Embryo, Nonmammalian/cytology , Osteonectin/genetics , Zebrafish/genetics
7.
Proc Natl Acad Sci U S A ; 112(3): 803-8, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25535365

ABSTRACT

There is no obvious morphological counterpart of the autopod (wrist/ankle and digits) in living fishes. Comparative molecular data may provide insight into understanding both the homology of elements and the evolutionary developmental mechanisms behind the fin to limb transition. In mouse limbs the autopod is built by a "late" phase of Hoxd and Hoxa gene expression, orchestrated by a set of enhancers located at the 5' end of each cluster. Despite a detailed mechanistic understanding of mouse limb development, interpretation of Hox expression patterns and their regulation in fish has spawned multiple hypotheses as to the origin and function of "autopod" enhancers throughout evolution. Using phylogenetic footprinting, epigenetic profiling, and transgenic reporters, we have identified and functionally characterized hoxD and hoxA enhancers in the genomes of zebrafish and the spotted gar, Lepisosteus oculatus, a fish lacking the whole genome duplication of teleosts. Gar and zebrafish "autopod" enhancers drive expression in the distal portion of developing zebrafish pectoral fins, and respond to the same functional cues as their murine orthologs. Moreover, gar enhancers drive reporter gene expression in both the wrist and digits of mouse embryos in patterns that are nearly indistinguishable from their murine counterparts. These functional genomic data support the hypothesis that the distal radials of bony fish are homologous to the wrist and/or digits of tetrapods.


Subject(s)
Fishes/anatomy & histology , Animals , Enhancer Elements, Genetic , Fishes/genetics , Gene Expression Regulation, Developmental , Genes, Homeobox , Mice
8.
Nature ; 507(7492): 371-5, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24646999

ABSTRACT

Genome-wide association studies (GWAS) have reproducibly associated variants within introns of FTO with increased risk for obesity and type 2 diabetes (T2D). Although the molecular mechanisms linking these noncoding variants with obesity are not immediately obvious, subsequent studies in mice demonstrated that FTO expression levels influence body mass and composition phenotypes. However, no direct connection between the obesity-associated variants and FTO expression or function has been made. Here we show that the obesity-associated noncoding sequences within FTO are functionally connected, at megabase distances, with the homeobox gene IRX3. The obesity-associated FTO region directly interacts with the promoters of IRX3 as well as FTO in the human, mouse and zebrafish genomes. Furthermore, long-range enhancers within this region recapitulate aspects of IRX3 expression, suggesting that the obesity-associated interval belongs to the regulatory landscape of IRX3. Consistent with this, obesity-associated single nucleotide polymorphisms are associated with expression of IRX3, but not FTO, in human brains. A direct link between IRX3 expression and regulation of body mass and composition is demonstrated by a reduction in body weight of 25 to 30% in Irx3-deficient mice, primarily through the loss of fat mass and increase in basal metabolic rate with browning of white adipose tissue. Finally, hypothalamic expression of a dominant-negative form of Irx3 reproduces the metabolic phenotypes of Irx3-deficient mice. Our data suggest that IRX3 is a functional long-range target of obesity-associated variants within FTO and represents a novel determinant of body mass and composition.


Subject(s)
Homeodomain Proteins/genetics , Introns/genetics , Mixed Function Oxygenases/genetics , Obesity/genetics , Oxo-Acid-Lyases/genetics , Proteins/genetics , Transcription Factors/genetics , Adipose Tissue/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Animals , Basal Metabolism/genetics , Body Mass Index , Body Weight/genetics , Brain/metabolism , Diabetes Mellitus, Type 2/genetics , Diet , Genes, Dominant/genetics , Homeodomain Proteins/metabolism , Humans , Hypothalamus/metabolism , Male , Mice , Phenotype , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Thinness/genetics , Transcription Factors/deficiency , Transcription Factors/metabolism , Zebrafish/embryology , Zebrafish/genetics
9.
Nat Genet ; 46(2): 136-143, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24413736

ABSTRACT

Type 2 diabetes affects over 300 million people, causing severe complications and premature death, yet the underlying molecular mechanisms are largely unknown. Pancreatic islet dysfunction is central in type 2 diabetes pathogenesis, and understanding islet genome regulation could therefore provide valuable mechanistic insights. We have now mapped and examined the function of human islet cis-regulatory networks. We identify genomic sequences that are targeted by islet transcription factors to drive islet-specific gene activity and show that most such sequences reside in clusters of enhancers that form physical three-dimensional chromatin domains. We find that sequence variants associated with type 2 diabetes and fasting glycemia are enriched in these clustered islet enhancers and identify trait-associated variants that disrupt DNA binding and islet enhancer activity. Our studies illustrate how islet transcription factors interact functionally with the epigenome and provide systematic evidence that the dysregulation of islet enhancers is relevant to the mechanisms underlying type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Islets of Langerhans/metabolism , Transcription Factors/metabolism , Base Sequence , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation , Diabetes Mellitus, Type 2/metabolism , Electrophoretic Mobility Shift Assay , Formaldehyde , Genome-Wide Association Study , Humans , Molecular Sequence Data , Sequence Analysis, RNA , Transcription Factors/genetics , Web Browser
10.
Dev Cell ; 23(6): 1219-29, 2012 Dec 11.
Article in English | MEDLINE | ID: mdl-23237954

ABSTRACT

Fossil data suggest that limbs evolved from fish fins by sequential elaboration of their distal endoskeleton, giving rise to the autopod close to the tetrapod origin. This elaboration may have occurred by a simultaneous reduction of the distal ectodermal fold of fish fins. Modulation of 5'Hoxd gene transcription, through tetrapod-specific digit enhancers, has been suggested as a possible evolutionary mechanism involved in these morphological transformations. Here, we overexpress hoxd13a in zebrafish to investigate the impact of increasing 5'Hoxd expression during fin development. This overexpression causes increased proliferation, distal expansion of chondrogenic tissue and finfold reduction. In addition, we also show that the tetrapod-specific 5'Hoxd enhancer CsC promotes similar expression in zebrafish fins and mouse limbs. Our results support the idea that modulation of 5'Hoxd gene expression, by acquisition of novel enhancer elements, offered the substrate for the evolution of fins and the origin of tetrapod limbs.


Subject(s)
Animal Fins/growth & development , Biological Evolution , Enhancer Elements, Genetic , Genes, Homeobox , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Zebrafish/genetics , Animal Fins/physiology , Animals , Cell Proliferation , Extremities/growth & development , Extremities/physiology , Gene Expression Regulation, Developmental , Phylogeny , Transcription, Genetic , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...