Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 106(5-1): 054602, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36559383

ABSTRACT

In this work we investigate the dynamics of the number-density fluctuations of a dilute suspension of active particles in a linear viscoelastic fluid. We propose a model for the frequency-dependent diffusion coefficient of the active particles which captures the effect of rotational diffusion on the persistence of their self-propelled motion and the viscoelasticity of the medium. Using fluctuating hydrodynamics, the linearized equations for the active suspension are derived, from which we calculate its dynamic structure factor and the corresponding intermediate scattering function. For a Maxwell-type rheological model, we find an intricate dependence of these functions on the parameters that characterize the viscoelasticity of the solvent and the activity of the particles, which can significantly deviate from those of an inert suspension of passive particles and of an active suspension in a Newtonian solvent. In particular, in some regions of the parameter space we uncover the emergence of oscillations in the intermediate scattering function at certain wave numbers which represent the hallmark of the nonequilibrium particle activity in the dynamical structure of the suspension and also encode the viscoelastic properties of the medium.

2.
Phys Rev E ; 105(1-1): 014123, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35193287

ABSTRACT

We study the relaxation dynamics of a binary liquid mixture near a light-absorbing Janus particle after switching on and off illumination using experiments and theoretical models. The dynamics is controlled by the temperature gradient formed around the heated particle. Our results show that the relaxation is asymmetric: The approach to a nonequilibrium steady state is much slower than the return to thermal equilibrium. Approaching a nonequilibrium steady state after a sudden temperature change is a two-step process that overshoots the response of spatial variance of the concentration field. The initial growth of concentration fluctuations after switching on illumination follows a power law in agreement with the hydrodynamic and purely diffusive model. The energy outflow from the system after switching off illumination is well described by a stretched exponential function of time with characteristic time proportional to the ratio of the energy stored in the steady state to the total energy flux in this state.

3.
Phys Rev Lett ; 126(10): 108001, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33784172

ABSTRACT

Thermally activated transitions are ubiquitous in nature, occurring in complex environments which are typically conceived as ideal viscous fluids. We report the first direct observations of a Brownian bead transiting between the wells of a bistable optical potential in a viscoelastic fluid with a single long relaxation time. We precisely characterize both the potential and the fluid, thus enabling a neat comparison between our experimental results and a theoretical model based on the generalized Langevin equation. Our findings reveal a drastic amplification of the transition rates compared to those in a Newtonian fluid, stemming from the relaxation of the fluid during the particle crossing events.

4.
Soft Matter ; 16(36): 8512-8513, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32909578

ABSTRACT

Correction for 'Transient coarsening and the motility of optically heated Janus colloids in a binary liquid mixture' by Juan Ruben Gomez-Solano et al., Soft Matter, 2020, DOI: 10.1039/d0sm00964d.

5.
Soft Matter ; 16(36): 8359-8371, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32781461

ABSTRACT

A gold-capped Janus particle suspended in a near-critical binary liquid mixture can self-propel under illumination. We have immobilized such a particle in a narrow channel and carried out a combined experimental and theoretical study of the non-equilibrium dynamics of a binary solvent around it - lasting from the very moment of switching illumination on until the steady state is reached. In the theoretical study we use both a purely diffusive and a hydrodynamic model, which we solve numerically. Our results demonstrate a remarkable complexity of the time evolution of the concentration field around the colloid. This evolution is governed by the combined effects of the temperature gradient and the wettability, and crucially depends on whether the colloid is free to move or is trapped. For the trapped colloid, all approaches indicate that the early time dynamics is purely diffusive and characterized by composition layers travelling with constant speed from the surface of the colloid into the bulk of the solvent. Subsequently, hydrodynamic effects set in. Anomalously large nonequilibrium fluctuations, which result from the temperature gradient and the vicinity of the critical point of the binary liquid mixture, give rise to strong concentration fluctuations in the solvent and to permanently changing coarsening patterns not observed for a mobile particle. The early time dynamics around initially still Janus colloids produces a force which is able to set the Janus colloid into motion. The propulsion due to this transient dynamics is in the direction opposite to that observed after the steady state is attained.

6.
Phys Rev E ; 100(3-1): 032123, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31640041

ABSTRACT

We investigate a one-dimensional model of active motion, which takes into account the effects of persistent self-propulsion through a memory function in a dissipative-like term of the generalized Langevin equation for particle swimming velocity. The proposed model is a generalization of the active Ornstein-Uhlenbeck model introduced by G. Szamel [Phys. Rev. E 90, 012111 (2014)10.1103/PhysRevE.90.012111]. We focus on two different kinds of memory which arise in many natural systems: an exponential decay and a power law, supplemented with additive colored noise. We provide analytical expressions for the velocity autocorrelation function and the mean-squared displacement, which are in excellent agreement with numerical simulations. For both models, damped oscillatory solutions emerge due to the competition between the memory of the system and the persistence of velocity fluctuations. In particular, for a power-law model with fractional Brownian noise, we show that long-time active subdiffusion occurs with increasing long-term memory.

7.
Nat Mater ; 18(10): 1118-1123, 2019 10.
Article in English | MEDLINE | ID: mdl-31384031

ABSTRACT

Understanding the mechanical properties of glasses is a great scientific challenge. A powerful technique to study the material response on a microscopic scale is microrheology, in which one analyses the translational dynamics of an externally driven probe particle. Here we show that the translational and rotational dynamics of a self-propelled probe particle with an unconstrained orientational motion can be used to gather information about the mechanical properties of a colloidal glassy system. We find that its rotational diffusion coefficient continuously increases towards the glass transition and drops down in the glassy state. Such unexpected behaviour demonstrates a strong coupling mechanism between the orientation of the active probe particle and the glassy structure, which can be well described by a simple rheological model. Our results suggest that active probe particles may be useful for the micromechanical characterization of complex materials.

8.
Phys Rev Lett ; 121(7): 078003, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30169097

ABSTRACT

We experimentally study the motion of light-activated colloidal microswimmers in a viscoelastic fluid. We find that, in such a non-Newtonian environment, the active colloids undergo an unexpected transition from enhanced angular diffusion to persistent rotational motion above a critical propulsion speed, despite their spherical shape and stiffness. We observe that, in contrast to chiral asymmetric microswimmers, the resulting circular orbits can spontaneously reverse their sense of rotation and exhibit an angular velocity and a radius of curvature that nonlinearly depend on the propulsion speed. By means of a minimal non-Markovian Langevin model for active Brownian motion, we show that these nonequilibrium effects emerge from the delayed response of the fluid with respect to the self-propulsion of the particle without counterpart in Newtonian fluids.

9.
Nat Commun ; 9(1): 999, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29519999

ABSTRACT

Microscopic colloidal particles suspended in liquids are a prominent example of an overdamped system where viscous forces dominate over inertial effects. Frequently, colloids are used as sensitive probes, e.g., in biophysical applications from which molecular forces are inferred. The interpretation of such experiments rests on the assumption that, even when the particles are driven, the liquid remains in equilibrium. Here we experimentally demonstrate that this is not valid for particles in viscoelastic fluids. Even at small driving forces, we observe particle oscillations with several tens of seconds. They are attributed to non-equilibrium fluctuations of the fluid being excited by the particle's motion. The oscillatory dynamics is in quantitative agreement with an overdamped Langevin equation with negative friction-memory term being equivalent to a stochastically driven underdamped oscillator. Such oscillatory modes are expected to widen the use of colloids as model systems but must also be considered in colloidal probe experiments.

10.
Sci Rep ; 7(1): 14891, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29097762

ABSTRACT

Microorganisms are able to overcome the thermal randomness of their surroundings by harvesting energy to navigate in viscous fluid environments. In a similar manner, synthetic colloidal microswimmers are capable of mimicking complex biolocomotion by means of simple self-propulsion mechanisms. Although experimentally the speed of active particles can be controlled by e.g. self-generated chemical and thermal gradients, an in-situ change of swimming direction remains a challenge. In this work, we study self-propulsion of half-coated spherical colloids in critical binary mixtures and show that the coupling of local body forces, induced by laser illumination, and the wetting properties of the colloid, can be used to finely tune both the colloid's swimming speed and its directionality. We experimentally and numerically demonstrate that the direction of motion can be reversibly switched by means of the size and shape of the droplet(s) nucleated around the colloid, depending on the particle radius and the fluid's ambient temperature. Moreover, the aforementioned features enable the possibility to realize both negative and positive phototaxis in light intensity gradients. Our results can be extended to other types of half-coated microswimmers, provided that both of their hemispheres are selectively made active but with distinct physical properties.

11.
Phys Rev Lett ; 116(13): 138301, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27082004

ABSTRACT

We experimentally investigate active motion of spherical Janus colloidal particles in a viscoelastic fluid. Self-propulsion is achieved by a local concentration gradient of a critical polymer mixture which is imposed by laser illumination. Even in the regime where the fluid's viscosity is independent of the deformation rate induced by the particle, we find a remarkable increase of up to 2 orders of magnitude of the rotational diffusion with increasing particle velocity, which can be phenomenologically described by an effective rotational diffusion coefficient dependent on the Weissenberg number. We show that this effect gives rise to a highly anisotropic response of microswimmers in viscoelastic media to external forces, depending on its orientation.

SELECTION OF CITATIONS
SEARCH DETAIL
...