Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neuroanat ; 15: 645940, 2021.
Article in English | MEDLINE | ID: mdl-33692673

ABSTRACT

The transient receptor potential vanilloid 1 (TRPV1) is a non-selective ligand-gated cation channel involved in synaptic transmission, plasticity, and brain pathology. In the hippocampal dentate gyrus, TRPV1 localizes to dendritic spines and dendrites postsynaptic to excitatory synapses in the molecular layer (ML). At these same synapses, the cannabinoid CB1 receptor (CB1R) activated by exogenous and endogenous cannabinoids localizes to the presynaptic terminals. Hence, as both receptors are activated by endogenous anandamide, co-localize, and mediate long-term depression of the excitatory synaptic transmission at the medial perforant path (MPP) excitatory synapses though by different mechanisms, it is plausible that they might be exerting a reciprocal influence from their opposite synaptic sites. In this anatomical scenario, we tested whether the absence of TRPV1 affects the endocannabinoid system. The results obtained using biochemical techniques and immunoelectron microscopy in a mouse with the genetic deletion of TRPV1 show that the expression and localization of components of the endocannabinoid system, included CB1R, change upon the constitutive absence of TRPV1. Thus, the expression of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) drastically increased in TRPV1-/- whole homogenates. Furthermore, CB1R and MAGL decreased and the cannabinoid receptor interacting protein 1a (CRIP1a) increased in TRPV1-/- synaptosomes. Also, CB1R positive excitatory terminals increased, the number of excitatory terminals decreased, and CB1R particles dropped significantly in inhibitory terminals in the dentate ML of TRPV1-/- mice. In the outer 2/3 ML of the TRPV1-/- mutants, the proportion of CB1R particles decreased in dendrites, and increased in excitatory terminals and astrocytes. In the inner 1/3 ML, the proportion of labeling increased in excitatory terminals, neuronal mitochondria, and dendrites. Altogether, these observations indicate the existence of compensatory changes in the endocannabinoid system upon TRPV1 removal, and endorse the importance of the potential functional adaptations derived from the lack of TRPV1 in the mouse brain.

2.
Glia ; 66(7): 1417-1431, 2018 07.
Article in English | MEDLINE | ID: mdl-29480581

ABSTRACT

Astroglial type-1 cannabinoid (CB1 ) receptors are involved in synaptic transmission, plasticity and behavior by interfering with the so-called tripartite synapse formed by pre- and post-synaptic neuronal elements and surrounding astrocyte processes. However, little is known concerning the subcellular distribution of astroglial CB1 receptors. In particular, brain CB1 receptors are mostly localized at cells' plasmalemma, but recent evidence indicates their functional presence in mitochondrial membranes. Whether CB1 receptors are present in astroglial mitochondria has remained unknown. To investigate this issue, we included conditional knock-out mice lacking astroglial CB1 receptor expression specifically in glial fibrillary acidic protein (GFAP)-containing astrocytes (GFAP-CB1 -KO mice) and also generated genetic rescue mice to re-express CB1 receptors exclusively in astrocytes (GFAP-CB1 -RS). To better identify astroglial structures by immunoelectron microscopy, global CB1 knock-out (CB1 -KO) mice and wild-type (CB1 -WT) littermates were intra-hippocampally injected with an adeno-associated virus expressing humanized renilla green fluorescent protein (hrGFP) under the control of human GFAP promoter to generate GFAPhrGFP-CB1 -KO and -WT mice, respectively. Furthermore, double immunogold (for CB1 ) and immunoperoxidase (for GFAP or hrGFP) revealed that CB1 receptors are present in astroglial mitochondria from different hippocampal regions of CB1 -WT, GFAP-CB1 -RS and GFAPhrGFP-CB1 -WT mice. Only non-specific gold particles were detected in mouse hippocampi lacking CB1 receptors. Altogether, we demonstrated the existence of a precise molecular architecture of the CB1 receptor in astrocytes that will have to be taken into account in evaluating the functional activity of cannabinergic signaling at the tripartite synapse.


Subject(s)
Astrocytes/metabolism , Astrocytes/ultrastructure , Hippocampus/metabolism , Hippocampus/ultrastructure , Receptor, Cannabinoid, CB1/metabolism , Animals , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Immunoenzyme Techniques , Mice, Knockout , Microscopy, Immunoelectron , Mitochondria/metabolism , Mitochondria/ultrastructure , Receptor, Cannabinoid, CB1/genetics
3.
J Chem Neuroanat ; 45(1-2): 26-35, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22902587

ABSTRACT

To what extent the intrinsic glutamatergic system of the cerebellum is able to keep normal features in the absence of mossy and climbing fibres, is at present not known. To answer this question, immunocytochemistry for light and high resolution electron microscopy was used to reveal the cellular and subcellular distribution of glutamate receptors in isolated cerebellar cultures. The localization of the ionotropic glutamate receptor subunits GluA2/3 and the metabotropic glutamate (mGlu) 1a and mGlu2/3 receptor subtypes was carried out in 0 to 9-day-old rat parasagittal slices developed in vitro for 20-40 days. The typical localization of GluA2/3, mGlu1a and mGlu2/3 observed in Purkinje cells, granule cells, Golgi cells and unipolar brush cells was maintained in the organotypic cultures. Furthermore, the subcellular distribution of mGlu1a showed the characteristic in vivo perisynaptic position in Purkinje cell dendritic spines receiving parallel fibre synapses. We conclude that the cellular and subcellular localization of the studied ionotropic and metabotropic glutamate receptors is not affected by the removal of the two extrinsic cerebellar glutamatergic inputs, the mossy and climbing fibres.


Subject(s)
Cerebellum/metabolism , Purkinje Cells/metabolism , Receptors, Ionotropic Glutamate/biosynthesis , Receptors, Metabotropic Glutamate/biosynthesis , Animals , Cells, Cultured , Cerebellum/chemistry , Cerebellum/ultrastructure , Fluorescent Antibody Technique , Immunohistochemistry , Microscopy, Electron, Transmission , Purkinje Cells/chemistry , Purkinje Cells/ultrastructure , Rats , Rats, Sprague-Dawley , Receptors, Ionotropic Glutamate/ultrastructure , Receptors, Metabotropic Glutamate/ultrastructure
4.
Eur J Neurosci ; 4(3): 221-234, 1992.
Article in English | MEDLINE | ID: mdl-12106368

ABSTRACT

Herein we describe the inverted cells [defined as those projection neurons having a major dendritic shaft abpially oriented (Bueno-López et al., Eur. J. Neurosci., 3, 415, 1991)] originating a unique set of cortical connections characterized by extraordinarily widespread horizontal distribution. Single and multiple injections of wheatgerm agglutinin - horseradish peroxidase were made in areas 17 and 18 and the resulting retrograde labelling in the cortex was analysed. The findings were assessed in independent control experiments in which Fluoro-Gold was used as retrograde tracer. Following single injections in area 17 several separate patches of labelled cells comprising layers 2 - 6 were consistently found in area 18. In addition to these associational cells a number of labelled cells appeared at the layer 5/6 border but were distributed over most of the tangential extent of the visual occipital cortex. This widespread pattern was particularly striking in brains after multiple injections. In these brains a conspicuous band of labelled cells at the 5/6 border radiated from the injection sites, making up an apparently continuous horizontal sheet that intersected the striate - extrastriate boundary and merged with the patches of labelled cells in area 18 and beyond. Most of the cells in the 5/6 border band were inverted cells (82%; n=2081). Injections in area 18 failed to produce such a widespread set of labelled cells in area 17. The functional significance of these connections furnished by the 5/6 border inverted cells remains to be determined, but their distribution would allow for convergent/divergent binding interactions both intra-areally (within area 17) and inter-areally (from area 18 to area 17).

6.
Eur J Neurosci ; 3(5): 415-430, 1991.
Article in English | MEDLINE | ID: mdl-12106181

ABSTRACT

This study examines the axonal projections of so-called inverted pyramids and other neurons with their major dendritic shaft oriented in the direction of the white matter ('inverted cells') in the adult rabbit cortex. Single injections of horseradish peroxidase wheat germ agglutinin were made into cortical or subcortical sites. The resulting retrograde labelling in the cortex was analysed and the distribution across areas and layers of inverted cells contributing to each of these projections was estimated. In addition, the radial distribution of inverted cells was independently determined from rapid Golgi-impregnated and Nissl-stained material. All three procedures revealed that inverted cells lay overwhelmingly in infragranular layers, but congregated at the border between layers 5 and 6. Inverted cells, identified by retrograde labelling, seldom furnished non-telencephalic centres; in contrast, these cells constituted a major source for the projections to the ipsi- or the contralateral cortex, the claustrum or the nucleus caudatus. In general, each set of inverted cells (when defined by its specific destination as a group) was located below the typically oriented cells whose axons were aimed at the same target. Thus, the inverted cells of the rabbit cortex are characterized not only by their unique morphology and their corticocortical, corticoclaustral and corticostriatal projections, but also by their distinctive radial locations. These findings suggest that inverted cells, even though possibly composed of different cell types, are a specific class of projection neurons.

SELECTION OF CITATIONS
SEARCH DETAIL
...