Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37765078

ABSTRACT

Multiple sclerosis is a disease caused by autoantigen-responsive immune cells that disrupt the myelin in the central nervous system (CNS). Although immunosuppressive drugs are used to suppress symptoms, no definitive therapy exists. As in the experimental autoimmune encephalitis (EAE) model of multiple sclerosis, a partial sequence of the myelin oligodendrocyte glycoprotein (MOG35-55) was identified as a causative autoantigen. This suggests that the induction of immune tolerance that is specific to MOG35-55 would be a fundamental treatment for EAE. We previously reported that lipid nanoparticles (LNPs) containing an anionic phospholipid, phosphatidylserine (PS), in their lipid composition, can be used to deliver mRNA and that this leads to proteins of interest to be expressed in the spleen. In addition to the targeting capability of PS, PS molecules avoid activating the immune system. Physiologically, the recognition of PS on apoptotic cells suppresses immune activation against these cells by releasing cytokines, such as interleukin-10 (IL-10) and transforming growth factor (TGF)-ß that negatively regulate immunity. In this study, we tested whether mRNA delivery of autoantigens to the spleen by PS-LNPs causes the expression of MOG35-55 antigens with minimal immune stimulation and whether this could be used to treat an EAE model by inducing immune tolerance.

2.
J Control Release ; 361: 77-86, 2023 09.
Article in English | MEDLINE | ID: mdl-37517544

ABSTRACT

Small extracellular vesicles (sEVs) are small, cell-derived particles with sizes of approximately 100 nm. Since these particles include cargos such as host cell-derived proteins, messenger RNAs, and micro RNAs, they serve as mediators of cell-cell communication. While the analysis of the pharmacokinetic of sEVs after the intravenous injection have been reported, the lymphatic transport of sEVs remains unclear. The objective of this study was to provide insights into the intra-lymphatic trafficking and distribution of sEVs when they are injected into an interstitial space both in normal skin tissue and in cancerous tissue. When sEVs were Subcutaneously administered into the tail base and the tumor tissue, they preferably accumulated in the lymph nodes (LNs), rather than in the liver and the spleen. The findings reported herein show that the lymphatic transport of sEVs was drastically changed in model mice, in which a surgical treatment was used to modify to allow the dominant lymphatic flow from the footpad directly to the axillary LN via the inguinal LN. Based on the results, we conclude that when sEVs are injected into the subcutis space, they are preferably delivered to the LN via the lymphatic system. Further, the extent of accumulation of sEVs in the LN after subcutaneous injection was reduced when they were preliminarily incubated with Proteinase K. These results suggest that the lymphatic drainage of sEVs in normal skin tissue is regulated by membrane proteins on their surface. This reduction, however, was not observed in the case of cancer tissue. This discrepancy can be attributed to the presence of highly permeable lymphatic vessels in the tumor tissue. Further, the major cell subtypes that captured sEVs in the LN were LN-resident medullary sinus macrophages. These collective findings indicate that the lymphatic drainage of sEVs are mediated by proteins and, that they may appear to contribute to the control of the function of immune-responsive cells in the LNs.


Subject(s)
Extracellular Vesicles , Lymphatic Vessels , Mice , Animals , Lymph Nodes/metabolism , Lymphatic Vessels/metabolism , Skin , Injections, Subcutaneous
3.
Adv Healthc Mater ; 12(9): e2202528, 2023 04.
Article in English | MEDLINE | ID: mdl-36535635

ABSTRACT

Lipid nanoparticles (LNPs) are one of the most successful technologies in messenger RNA (mRNA) delivery. While the liver is the most frequent target for LNP delivery of mRNA, technologies for delivering mRNA molecules to extrahepatic tissues are also important. Herein, it is reported on the development of an LNP that targets secondary lymphoid tissues. New types of alcohol-soluble phosphatidylserine (PS) derivatives are designed as materials that target immune cells and then incorporated into LNPs using a microfluidic technique with a high degree of scalability and reproducibility. The resulting LNP that contained the synthesized PS delivered mRNA to the spleen much more efficiently compared to a control LNP. A sub-organ analysis revealed that the PS-loaded LNP is extensively taken up by tissue-resident macrophages in the red pulp and the marginal zone of the spleen. Thus, the PS-loaded LNP reported in this study will be a promising strategy for clinical applications that involve delivering mRNA to the spleen.


Subject(s)
Nanoparticles , Phosphatidylserines , RNA, Messenger/genetics , Reproducibility of Results , Liposomes , Lymphoid Tissue , RNA, Small Interfering
4.
Pharmaceutics ; 14(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36015185

ABSTRACT

The blood-brain barrier (BBB), which is comprised of brain capillary endothelial cells, plays a pivotal role in the transport of drugs from the blood to the brain. Therefore, an analysis of proteins in the endothelial cells, such as transporters and tight junction proteins, which contribute to BBB function, is important for the development of therapeutics for the treatment of brain diseases. However, gene transfection into the vascular endothelial cells of the BBB is fraught with difficulties, even in vitro. We report herein on the development of lipid nanoparticles (LNPs), in which mRNA is encapsulated in a nano-sized capsule composed of a pH-activated and reductive environment-responsive lipid-like material (ssPalm). We evaluated the efficiency of mRNA delivery into non-polarized human brain capillary endothelial cells, hCMEC/D3 cells. The ssPalm LNPs permitted marker genes (GFP) to be transferred into nearly 100% of the cells, with low toxicity in higher concentration. A proteomic analysis indicated that the ssPalm-LNP had less effect on global cell signaling pathways than a Lipofectamine MessengerMAX/GFP-encoding mRNA complex (LFN), a commercially available transfection reagent, even at higher mRNA concentrations.

5.
Pharmaceutics ; 13(9)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34575540

ABSTRACT

The sentinel lymph node (SLN) is the first lymph node into which lymphatic fluid from tumor tissues flows. The development of a highly sensitive probe for detecting SLNs is desired for the lymph node dissection through intraoperative biopsy. We have previously shown that anionic liposomes tend to accumulate in lymph nodes and that macrophage uptake of liposomes contributes to their accumulation. In the present study, we found that among anionic lipids, phosphatidylserine (PS)-containing liposomes were substantially taken up by macrophages. We identified a new lipid composition to improve the SNL-selectivity of liposome accumulation based on Design-of-Experiment. The optimized PS-containing particles were more selectively accumulate to SLN lymph nodes than existing imaging agents indocyanine green. These results indicate the effectiveness of PS-containing anionic particles in SLN imaging.

6.
Mol Ther ; 29(1): 225-235, 2021 01 06.
Article in English | MEDLINE | ID: mdl-32966771

ABSTRACT

The sentinel lymph node (LN) is the first LN to which lymph fluid flows from tumor tissue. We identified the key parameters of liposomes (LPs) that affect their accumulation in regional (primary) LNs with minimum leakage to its connecting (secondary) LNs by a comprehensive analysis of the LN-to-LN trafficking of LPs with various surface charges and various sizes. We used a lymphatic flow-modified (LFM) mouse that allows for the chronological analysis of inguinal (primary) LN-to-axillary (secondary) LN at the body surface. As a result, the anionic medium-sized LPs (130 nm on average) exhibited the highest accumulation in the primary LNs. A mechanism-based analysis revealed that CD169-positive macrophages in LNs were the dominant cell population that captures anionic LPs. Sentinel LN imaging was also performed by the intratumoral injection of fluorescent medium-sized anionic LPs using a breast cancer orthotopic model. In comparison with the typically used contrast agent indocyanine green, the anionic LPs were detected in sentinel LNs with a high sensitivity. Additionally, the co-injection of hyaluronidase significantly improved the sensitivity of detection of the fluorescent LPs in sentinel LNs. In conclusion, medium-sized anionic LPs combined with hyaluronidase represents a potent strategy for investigating sentinel LNs.


Subject(s)
Biomarkers , Liposomes , Lymphatic Metastasis/diagnostic imaging , Lymphatic Metastasis/pathology , Sentinel Lymph Node/diagnostic imaging , Contrast Media , Humans , Kinetics , Liposomes/administration & dosage , Liposomes/metabolism , Macrophages/metabolism , Neoplasm Staging , Optical Imaging/methods , Sentinel Lymph Node/pathology
7.
Sci Rep ; 8(1): 5921, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29651026

ABSTRACT

Methods for quantitative analysis of long distance lymphatic transport of nanoparticles in live animals are yet to be established. We established a mouse model for analysis of time-dependent transport just beneath the abdominal skin to investigate lymph node-to-lymph node trafficking by in vivo imaging. For this purpose, popliteal lymph nodes (PLNs) as well as efferent and afferent lymphatic vessels, marginal veins, and feeding blood vessels were surgically resected to change the lymphatic flow from footpad injections. Using this model, we observed a novel lymphatic flow from the footpad to the proper axillary lymph node (ALN) via the inguinal lymph node (ILN). This drainage pathway was maintained over 12 weeks. Time-dependent transportation of 1,1'-dioctadecyltetramethyl indotricarbocyanine iodide-labelled liposomes from the footpad to the ILN was successfully quantified by an in vivo imaging system. Moreover, congestion and development of a new collateral lymphatic route was visualised under a lymphedema status. Histological analysis of abdominal skin tissues of this model revealed that PLN resection had no effect on the abdominal lymphatic system between the ILN and ALN. These data indicate that this model might be useful to clarify the mechanisms of lymphedema and study direct transportation of lymph or other substances between lymph nodes.


Subject(s)
Lymph Nodes/metabolism , Lymphatic Vessels/metabolism , Lymphedema/drug therapy , Nanoparticles/administration & dosage , Animals , Axilla/diagnostic imaging , Biological Transport/drug effects , Disease Models, Animal , Humans , Lower Extremity/diagnostic imaging , Lymph Nodes/diagnostic imaging , Lymphatic System/drug effects , Lymphatic Vessels/diagnostic imaging , Lymphatic Vessels/drug effects , Lymphedema/pathology , Mice , Nanoparticles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...