Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38668215

ABSTRACT

We report a joint high-pressure experimental and theoretical study of the structural, vibrational, and photoluminescent properties of pure and Eu3+-doped cubic Y2O3 nanoparticles with two very different average particle sizes. We compare the results of synchrotron X-ray diffraction, Raman scattering, and photoluminescence measurements in nanoparticles with ab initio density-functional simulations in bulk material with the aim to understand the influence of the average particle size on the properties of pure and doped Y2O3 nanoparticles under compression. We observe that the high-pressure phase behavior of Y2O3 nanoparticles depends on the average particle size, but in a different way to that previously reported. Nanoparticles with an average particle size of ~37 nm show the same pressure-induced phase transition sequence on upstroke and downstroke as the bulk sample; however, nanoparticles with an average particle size of ~6 nm undergo an irreversible pressure-induced amorphization above 16 GPa that is completed above 24 GPa. On downstroke, 6 nm nanoparticles likely consist of an amorphous phase.

2.
Dalton Trans ; 52(40): 14517-14526, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37781733

ABSTRACT

The crystal structure of YbSbO4 was determined from powder X-ray diffraction data using the Rietveld method. YbSbO4 is found to be monoclinic and isostructural to α-PrSbO4. We have also tested the influence of pressure on the crystal structure up to 22 GPa by synchrotron powder X-ray diffraction. No phase transition was found. The P-V equation of state and axial compressibilities were determined. Experiments were combined with density-functional theory calculations, which provided information on the elastic constants and the influence of pressure in the crystal structure and Raman/infrared phonons. Results are compared with those from other orthoantimonates. Reasons for the difference in the high-pressure behaviour of YbSbO4 compared with most antimony oxides will be discussed.

3.
Phys Chem Chem Phys ; 23(41): 23625-23642, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34664047

ABSTRACT

This joint experimental and theoretical study of the structural and vibrational properties of ß-In2S3 upon compression shows that this tetragonal defect spinel undergoes two reversible pressure-induced order-disorder transitions up to 20 GPa. We propose that the first high-pressure phase above 5.0 GPa has the cubic defect spinel structure of α-In2S3 and the second high-pressure phase (ϕ-In2S3) above 10.5 GPa has a defect α-NaFeO2-type (R3̄m) structure. This phase, related to the NaCl structure, has not been previously observed in spinels under compression and is related to both the tetradymite structure of topological insulators and to the defect LiTiO2 phase observed at high pressure in other thiospinels. Structural characterization of the three phases shows that α-In2S3 is softer than ß-In2S3 while ϕ-In2S3 is harder than ß-In2S3. Vibrational characterization of the three phases is also provided, and their Raman-active modes are tentatively assigned. Our work shows that the metastable α phase of In2S3 can be accessed not only by high temperature or varying composition, but also by high pressure. On top of that, the pressure-induced ß-α-ϕ sequence of phase transitions evidences that ß-In2S3, a BIII2XV3 compound with an intriguing structure typical of AIIBIII2XVI4 compounds (intermediate between thiospinels and ordered-vacancy compounds) undergoes: (i) a first phase transition at ambient pressure to a disordered spinel-type structure (α-In2S3), isostructural with those found at high pressure and high temperature in other BIII2XV3 compounds; and (ii) a second phase transition to the defect α-NaFeO2-type structure (ϕ-In2S3), a distorted NaCl-type structure that is related to the defect NaCl phase found at high pressure in AIIBIII2XVI4 ordered-vacancy compounds and to the defect LiTiO2-type phase found at high pressure in AIIBIII2XVI4 thiospinels. This result shows that In2S3 (with its intrinsic vacancies) has a similar pressure behaviour to thiospinels and ordered-vacancy compounds of the AIIBIII2XVI4 family, making ß-In2S3 the union link between such families of compounds and showing that group-13 thiospinels have more in common with ordered-vacancy compounds than with oxospinels and thiospinels with transition metals.

4.
Inorg Chem ; 59(14): 9900-9918, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32640163

ABSTRACT

High pressure X-ray diffraction, Raman scattering, and electrical measurements, together with theoretical calculations, which include the analysis of the topological electron density and electronic localization function, evidence the presence of an isostructural phase transition around 2 GPa, a Fermi resonance around 3.5 GPa, and a pressure-induced decomposition of SnSb2Te4 into the high-pressure phases of its parent binary compounds (α-Sb2Te3 and SnTe) above 7 GPa. The internal polyhedral compressibility, the behavior of the Raman-active modes, the electrical behavior, and the nature of its different bonds under compression have been discussed and compared with their parent binary compounds and with related ternary materials. In this context, the Raman spectrum of SnSb2Te4 exhibits vibrational modes that are associated but forbidden in rocksalt-type SnTe; thus showing a novel way to experimentally observe the forbidden vibrational modes of some compounds. Here, some of the bonds are identified with metavalent bonding, which were already observed in their parent binary compounds. The behavior of SnSb2Te4 is framed within the extended orbital radii map of BA2Te4 compounds, so our results pave the way to understand the pressure behavior and stability ranges of other "natural van der Waals" compounds with similar stoichiometry.

5.
Inorg Chem ; 59(14): 9648-9666, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32584569

ABSTRACT

We report a joint experimental and theoretical investigation of the high pressure structural and vibrational properties of terbium sesquioxide (Tb2O3). Powder X-ray diffraction and Raman scattering measurements show that cubic Ia3̅ (C-type) Tb2O3 undergoes two phase transitions up to 25 GPa. We observe a first irreversible reconstructive transition to the monoclinic C2/m (B-type) phase at ∼7 GPa and a subsequent reversible displacive transition from the monoclinic to the trigonal P3̅m1 (A-type) phase at ∼12 GPa. Thus, Tb2O3 is found to follow the well-known C → B → A phase transition sequence found in other cubic rare earth sesquioxides with cations of larger atomic mass than Tb. Our ab initio theoretical calculations predict phase transition pressures and bulk moduli for the three phases in rather good agreement with experimental results. Moreover, Raman-active modes of the three phases have been monitored as a function of pressure, while lattice-dynamics calculations have allowed us to confirm the assignment of the experimental phonon modes in the C- and A-type phases as well as to make a tentative assignment of the symmetry of most vibrational modes in the B-type phase. Finally, we extract the bulk moduli and the Raman-active mode frequencies together with their pressure coefficients for the three phases of Tb2O3. These results are thoroughly compared and discussed in relation to those reported for rare earth and other related sesquioxides as well as with new calculations for selected sesquioxides. It is concluded that the evolution of the volume and bulk modulus of all the three phases of these technologically relevant compounds exhibit a nearly linear trend with respect to the third power of the ionic radii of the cations and that the values of the bulk moduli for the three phases depend on the filling of the f orbitals.

6.
Phys Chem Chem Phys ; 22(6): 3352-3369, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-31976513

ABSTRACT

We report a joint experimental and theoretical study of the structural, vibrational, and electronic properties of layered monoclinic arsenic sulfide crystals (α-As2S3), aka mineral orpiment, under compression. X-ray diffraction and Raman scattering measurements performed on orpiment samples at high pressure and combined with ab initio calculations have allowed us to determine the equation of state and the tentative assignment of the symmetry of many Raman-active modes of orpiment. From our results, we conclude that no first-order phase transition occurs up to 25 GPa at room temperature; however, compression leads to an isostructural phase transition above 20 GPa. In fact, the As coordination increases from threefold at room pressure to more than fivefold above 20 GPa. This increase in coordination can be understood as the transformation from a solid with covalent bonding to a solid with metavalent bonding at high pressure, which results in a progressive decrease of the electronic and optical bandgap, an increase of the dielectric tensor components and Born effective charges, and a considerable softening of many high-frequency optical modes with increasing pressure. Moreover, we propose that the formation of metavalent bonding at high pressures may also explain the behavior of other group-15 sesquichalcogenides under compression. In fact, our results suggest that group-15 sesquichalcogenides either show metavalent bonding at room pressure or undergo a transition from p-type covalent bonding at room pressure towards metavalent bonding at high pressure, as a precursor towards metallic bonding at very high pressure.

7.
Inorg Chem ; 56(14): 8363-8371, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28648048

ABSTRACT

The effects of high pressure on the crystal structure of orthorhombic (Pnma) perovskite-type cerium scandate were studied in situ under high pressure by means of synchrotron X-ray powder diffraction, using a diamond-anvil cell. We found that the perovskite-type crystal structure remains stable up to 40 GPa, the highest pressure reached in the experiments. The evolution of unit-cell parameters with pressure indicated an anisotropic compression. The room-temperature pressure-volume equation of state (EOS) obtained from the experiments indicated the EOS parameters V0 = 262.5(3) Å3, B0 = 165(7) GPa, and B0' = 6.3(5). From the evolution of microscopic structural parameters like bond distances and coordination polyhedra of cerium and scandium, the macroscopic behavior of CeScO3 under compression was explained and reasoned for its large pressure stability. The reported results are discussed in comparison with high-pressure results from other perovskites.

8.
Inorg Chem ; 55(10): 4958-69, 2016 05 16.
Article in English | MEDLINE | ID: mdl-27128858

ABSTRACT

The high-pressure crystal structure, lattice-vibrations, and electronic band structure of BiSbO4 were studied by ab initio simulations. We also performed Raman spectroscopy, infrared spectroscopy, and diffuse-reflectance measurements, as well as synchrotron powder X-ray diffraction. High-pressure X-ray diffraction measurements show that the crystal structure of BiSbO4 remains stable up to at least 70 GPa, unlike other known MTO4-type ternary oxides. These experiments also give information on the pressure dependence of the unit-cell parameters. Calculations properly describe the crystal structure of BiSbO4 and the changes induced by pressure on it. They also predict a possible high-pressure phase. A room-temperature pressure-volume equation of state is determined, and the effect of pressure on the coordination polyhedron of Bi and Sb is discussed. Raman- and infrared-active phonons were measured and calculated. In particular, calculations provide assignments for all the vibrational modes as well as their pressure dependence. In addition, the band structure and electronic density of states under pressure were also calculated. The calculations combined with the optical measurements allow us to conclude that BiSbO4 is an indirect-gap semiconductor, with an electronic band gap of 2.9(1) eV. Finally, the isothermal compressibility tensor for BiSbO4 is given at 1.8 GPa. The experimental (theoretical) data revealed that the direction of maximum compressibility is in the (0 1 0) plane at ∼33° (38°) to the c-axis and 47° (42°) to the a-axis. The reliability of the reported results is supported by the consistency between experiments and calculations.

9.
Inorg Chem ; 54(13): 6594-605, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26090863

ABSTRACT

We report a combined experimental and theoretical study of melilite-type germanate, Sr2ZnGe2O7, under compression. In situ high-pressure X-ray diffraction and Raman scattering measurements up to 22 GPa were complemented with first-principles theoretical calculations of structural and lattice dynamics properties. Our experiments show that the tetragonal structure of Sr2ZnGe2O7 at ambient conditions transforms reversibly to a monoclinic phase above 12.2 GPa with ∼1% volume drop at the phase transition pressure. Density functional calculations indicate the transition pressure at ∼13 GPa, which agrees well with the experimental value. The structure of the high-pressure monoclinic phase is closely related to the ambient pressure phase and results from a displacive-type phase transition. Equations of state of both tetragonal and monoclinic phases are reported. Both of the phases show anisotropic compressibility with a larger compressibility in the direction perpendicular to the [ZnGe2O7](2-) sheets than along the sheets. Raman-active phonons of both the tetragonal and monoclinic phases and their pressure dependences were also determined. Tentative assignments of the Raman modes of the tetragonal phase were discussed in the light of lattice dynamics calculations. A possible irreversible second phase transition to a highly disordered or amorphous state is detected in Raman scattering measurements above 21 GPa.

10.
Inorg Chem ; 52(21): 12790-8, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24151839

ABSTRACT

A new wolframite-type polymorph of InVO4 is identified under compression near 7 GPa by in situ high-pressure (HP) X-ray diffraction (XRD) and Raman spectroscopic investigations on the stable orthorhombic InVO4. The structural transition is accompanied by a large volume collapse (ΔV/V = -14%) and a drastic increase in bulk modulus (from 69 to 168 GPa). Both techniques also show the existence of a third phase coexisting with the low- and high-pressure phases in a limited pressure range close to the transition pressure. XRD studies revealed a highly anisotropic compression in orthorhombic InVO4. In addition, the compressibility becomes nonlinear in the HP polymorph. The volume collapse in the lattice is related to an increase of the polyhedral coordination around the vanadium atoms. The transformation is not fully reversible. The drastic change in the polyhedral arrangement observed at the transition is indicative of a reconstructive phase transformation. The HP phase here found is the only modification of InVO4 reported to date with 6-fold coordinated vanadium atoms. Finally, Raman frequencies and pressure coefficients in the low- and high-pressure phases of InVO4 are reported.

11.
Angew Chem Int Ed Engl ; 52(40): 10458-62, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23913399

ABSTRACT

The first pressure-induced solid-phase synthesis of a zeolite has been found through compression of a common zeolite, ITQ-29 (see scheme, Si yellow, O red). The new microporous structure, ITQ-50, has a unique structure and improved performance for propene/propane separation with respect the parent material ITQ-29.

12.
Inorg Chem ; 51(9): 5289-98, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22530949

ABSTRACT

Angle-dispersive X-ray diffraction measurements have been performed in acanthite, Ag(2)S, up to 18 GPa in order to investigate its high-pressure structural behavior. They have been complemented by ab initio electronic structure calculations. From our experimental data, we have determined that two different high-pressure phase transitions take place at 5 and 10.5 GPa. The first pressure-induced transition is from the initial anti-PbCl(2)-like monoclinic structure (space group P2(1)/n) to an orthorhombic Ag(2)Se-type structure (space group P2(1)2(1)2(1)). The compressibility of the lattice parameters and the equation of state of both phases have been determined. A second phase transition to a P2(1)/n phase has been found, which is a slight modification of the low-pressure structure (Co(2)Si-related structure). The initial monoclinic phase was fully recovered after decompression. Density functional and, in particular, GGA+U calculations present an overall good agreement with the experimental results in terms of the high-pressure sequence, cell parameters, and their evolution with pressure.

SELECTION OF CITATIONS
SEARCH DETAIL
...