Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Environ Technol ; 43(8): 1248-1254, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32928067

ABSTRACT

Iron bioaccumulation in basidiomycetes is an alternative to recover ferrous sulphate from titanium dioxide pigment production and to produce an iron-enriched mycelial biomass. This study aimed to evaluate iron bioaccumulation capacity in vegetative mycelium of edible and medicinal fungi grown in malt extract liquid medium with different ferrous sulphate contents. Five basidiomycetes were grown in malt extract liquid medium with different iron contents from 0.116 to 100 mg L-1 iron. The iron content of dried mycelial biomass bioaccumulated with iron was determined by flame atomic absorption spectrophotometry. All fungi grew on the iron culture media and the mycelial biomass growth ranged from 3.24 ± 0.65a mg mL-1 to 12.46 ± 0.29 mg mL-1. Iron addition to culture media increased the iron content in the mycelial biomass from 4000-13,000-fold compared with control. Pleurotus ostreatus (2181 ± 218 mg kg-1) presented the greatest iron content in the mycelial biomass, followed by Schizophyllum commune (1769 ± 131 mg kg-1), Agaricus subrufescens (1272 ± 8.84 mg kg-1), and Ganoderma lucidum (840 ± 75 mg kg-1). P. ostreatus, followed by S. commune, and G. lucidum at 90 and 100 mg L-1 iron in the culture medium are the best choices to produce iron-enriched mycelial biomass. This extensive study of several edible and medicinal basidiomycetes grown in different iron contents was effective in recovering ferrous sulphate byproduct and transferring it to mycelium to produce a new nutraceutical food of iron-enriched mycelial biomass.


Subject(s)
Iron , Pleurotus , Biomass , Culture Media , Mycelium
2.
Environ Dev Sustain ; 24(9): 10728-10751, 2022.
Article in English | MEDLINE | ID: mdl-34658662

ABSTRACT

The increasing mortality of COVID-19 can aggravate soil contamination by metals, harmful to the health of the population, requiring new projects for future cemeteries capable of mitigating these impacts to the environment, justifying the importance of studying the concentrations of metals in the soil of urban cemeteries. The paper analyzed the levels of metals in the soil of urban cemeteries in the City of Carazinho, in the state of Rio Grande do Sul, located in southern Brazil, considering the increase in deaths by COVID-19, for the purpose of future projects for cemeteries aimed at mitigating the impacts generated on the environment. The soils of the three urban cemeteries in Carazinho were sampled, with 5 internal and external points, with 3 repetitions at depths of 0-20 and 20-40 cm, adding 180 samples to measure the concentrations of Fe, Mn, Cu, Zn, Cr and Pb (g kg-1), considering the analytical sequence: (1) analysis in triplicate with mean deviation (RDS); (2) R2 of the analytical curve; (3) traceability of the pattern of each metal; (4) quantification limit of each metal (QL), with the performance of nitroperchloric digestion of the samples and the determinations of metals by flame modality atomic absorption spectrometry. Quantitative data on deaths by COVID-19 were analyzed by univariate modeling of time series, in the integrated autoregressive moving averages model. The results of this study were made available to fifteen architects, who attributed future solutions for environmentally sustainable cemeteries. The results showed high levels of copper (Cu) and iron (Fe) in the soil of the cemeteries studied. Considering the increase in deaths and subsequent burials per COVID-19 revealed a prediction for the death toll of 6,082,306 for June 9, 2022, it is assumed that metal contamination can reach even higher levels. To mitigate these levels of contamination by metals, 80% of the architect respondents expressed their preference for a vertical cemetery, with treatment of gases and effluents to mitigate environmental impacts.

3.
Geosci Front ; 13(6): 101310, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36896207

ABSTRACT

Urban cemeteries are increasingly surrounded by areas of high residential density as urbanization continues world-wide. With increasing rates of mortality caused by the novel coronavirus, SARS-CoV-2, urban vertical cemeteries are experiencing interments at an unprecedented rate. Corpses interred in the 3rd to 5th layer of vertical urban cemeteries have the potential to contaminate large adjacent regions. The general objective of this manuscript is to analyze the reflectance of altimetry, normalized difference vegetation index (NDVI) and land surface temperature (LST) in the urban cemeteries and neighbouring areas of the City of Passo Fundo, Rio Grande do Sul, Brazil. It is assumed that the population residing in the vicinity of these cemeteries may be exposed to SARS-CoV-2 contamination through the displacement of microparticles carried by the wind as a corpse is placed in the burial niche or during the first several days of subsequent fluid and gas release through the process of decomposition. The reflectance analyses were performed utilizing Landsat 8 satellite images applied to altimetry, NDVI and LST, for hypothetical examination of possible displacement, transport and subsequent deposition of the SARS-CoV-2 virus. The results showed that two cemeteries within the city, cemeteries A and B could potentially transport SARS-CoV-2 of nanometric structure to neighboring residential areas through wind action. These two cemeteries are located at high relative altitudes in more densely populated regions of the city. The NDVI, which has been shown to control the proliferation of contaminants, proved to be insufficient in these areas, contributing to high LST values. Based on the results of this study, the formation and implementation of public policies that monitor urban cemeteries is suggested in areas that utilize vertical urban cemeteries in order to reduce the further spread of the SARS-CoV-2 virus.

4.
Chemosphere ; 262: 128248, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32962839

ABSTRACT

Urban cemeteries on a global scale raise concerns due to their potential to concentrate differing levels of hazardous pollutants in their native soils due to the unnatural concentration of burials in a limited space. It is paramount for sustainability that designers of future cemeteries take this into account in order to minimize the deposition and movement of these contaminants within the soil profile. The objective of this manuscript is to identify the levels of certain hazardous element contamination, specifically heavy metals, in the soil of horizontal urban cemeteries that do not utilize herbicides for weed control. In this, solutions were sought for the construction of future urban cemeteries capable of mitigating further contamination of the environment by the increase in interments. The soils of three urban cemeteries (A, B and C) in the Brazilian city of Carazinho, in Rio Grande do Sul State, were sampled with 5 monitoring points in the internal area and 5 points in the external area of the cemeteries. At each point, 3 replications were performed at two depths (0-20 and 20-40 cm), totaling 180 samples in all, to determine the concentration of the following metals: copper (Cu), zinc (Zn), iron (Fe), manganese (Mn), lead (Pb), and chromium (Cr) (g kg-1). In addition, online interviews with 15 architects who design cemeteries were conducted. Architectural design solutions to mitigate environmental contamination were modeled utilizing the Building Information Modeling system (BIM). The results showed an excess of Cu in the soil of cemeteries A, B and C, surpassing the standards allowed by Brazilian federal regulations. A total of 80% of the interviewed architects expressed their preference for the vertical cemetery, with gas and effluent treatment systems to mitigate environmental impacts.


Subject(s)
Cemeteries , Environmental Monitoring , Hazardous Substances/analysis , Soil Pollutants/analysis , Brazil , Chromium/analysis , Cities , Copper , Environment , Environmental Pollution , Iron , Manganese , Metals, Heavy/analysis , Soil , Zinc/analysis
5.
J Environ Health Sci Eng ; 18(2): 809-823, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33312604

ABSTRACT

Although not considered poisonous and with natural occurrence, Zn contamination is mainly related to anthropic actions. This research aim was to develop, from crambe wastes, adsorbents with high adsorption capacity of Zn2+. The crambe biomass was modified with H2O2, H2SO4 and NaOH 0.1 mol L-1, resulting in four crambe-based adsorbents: C. in natura (unmodified), C. H2O2, C. H2SO4 and C. NaOH. These were studied by determination of their chemical components, SEM, FTIR, pHPZC, thermal stability (by TG/DTG curves), SSA, pore volume and pore diameter (by BET and BJH). Adsorption studies were also carried out to evaluate its Zn removal capacity. Evaluations were taken on adsorbent dose and the influence of the pH, as well as studies on adsorption kinetics and equilibrium. These results were evaluated by pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion, Langmuir, Freundlich, Dubinin-Radushkevich and Sips (linear and nonlinear models). Results show that the crambe-based adsorbents may have functional groups such as hydroxyls, amides, carbonyls and carboxylates, which may be responsible for the Zn2+adsorption. The materials have heterogeneous structure, allowing the occurrence of mono and multilayer adsorption of Zn. The finest results point out the occurrence of mono and multilayer of Zn2+ (evidenced by Sips-nonlinear model), with an increase in Qsat of 72% (C. H2O2), 22% (C. H2SO4) and 80% (C. NaOH). The developed crambe adsorbents have low cost of production (since the raw material is until now a solid waste) and have high removal ratio of Zn2+ from waters, being a promising technology.

6.
Sci Rep ; 10(1): 12875, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732960

ABSTRACT

Basidiomycetes can bioaccumulate high iron contents, but there are few studies on iron availability from the mycelial biomass in order to support their use as an iron-enriched fungal food. This study aimed to evaluate the in vitro iron bioaccumulation and availability in the mycelial biomass of edible and medicinal basidiomycetes grown in two distinct culture media. Lentinus crinitus, Ganoderma lucidum, Schizophyllum commune, Pleurotus ostreatus, Pleurotus eryngii, Lentinula edodes, and Agaricus subrufescens were grown in liquid culture medium of malt extract or sugarcane molasses to obtain iron-bioaccumulated mycelial biomass. P. ostreatus was the fungus that most bioaccumulated iron, followed by S. commune, and P. eryngii; they also had the highest mycelial biomass growth and iron transfer from the culture medium to the mycelial biomass. Mycelial iron availability is species-specific, regardless of the culture medium and the iron bioaccumulation capacity of the fungus in the mycelial biomass. Mycelial biomass of S. commune, followed by G. lucidum, P. ostreatus, and P. eryngii, associated with molasses culture medium, are the best choice for the production of iron-enriched mycelial biomass.


Subject(s)
Agaricales/growth & development , Biofortification , Biomass , Iron/metabolism , Saccharum/chemistry
7.
J Environ Manage ; 262: 110342, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32250818

ABSTRACT

The search for vegetal species regarding effectiveness in the phytoremediation of soils is of great importance, mainly in function of the great environmental problems, such as soil contamination with heavy metals, the necessity of producing more food, among others that mankind face today. This work aimed (i) to evaluate phytoremediation capacity of Crambe abyssinica Hochst and its growth in soil artificially contaminated with Cd and Pb, and (ii) to evaluate the possible impacts of crambe cultivation in contaminated soil conditions, in order to evaluate, to test, and to question the Brazilian CONAMA 420, providing important information that can be useful for governmental and environmental purposes. Two simultaneous experiments were developed, one for each metal. The soils were contaminated with salts of CdCl2 and PbCl2H2O in five doses based on the investigation values (IV) of CONAMA Resolution 420, resulting in 0; 1.5; 3; 9 and 30 mg kg-1 for Cd and 33; 90; 180; 540 and 1800 mg kg-1 for Pb. Gaseous exchange, development, nutritional composition and production of plant components, as well as phytoavailability of metals, were evaluated. The contamination with metals reduced photosynthesis, increased breathing as well as leading to a negative effect on the mineral nutrition and productivity in general; Plants cultivated in soil with Cd presented higher phytoavailability when compared to those cultivated in the Pb conditions, being found metals in all parts of the crambe plants from 1.5 mg kg- 1 of Cd in the soil; and Pb was retained only in roots, not being translocated in the plant. Cd showed higher phytoavailability, being found in all parts of the plant and Pb was retained only in the roots. Cd showed a higher phytoavailability when compared to Pb, also being found in all parts of crambe plants from dose 1.5 mg kg-1 of Cd in soil, which is an environmental problem, since in these concentrations the cultivation of crops is allowed by Brazilian legislation CONAMA 420.


Subject(s)
Crambe Plant , Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Brazil , Cadmium , Lead , Soil
8.
Int J Phytoremediation ; 21(13): 1368-1374, 2019.
Article in English | MEDLINE | ID: mdl-31264464

ABSTRACT

The present study aimed to evaluate the aquatic macrophyte Savinia auriculata in post-treatment of wastewater from a dairy industry. The experiment was carried out in a greenhouse between February and March 2015. A batch system was used, each reactor was composed of polyethylene and had capacity of 250 liters of post-treated effluent. Every seven days, pH, turbidity, temperature, dissolved oxygen, chemical oxygen demand and series of solids (total, fixed and volatile) were determined in the wastewater. Besides that, the concentration of macro and micronutrients (P, N, K, Ca, Mg, Cu, Zn, Mn, and Fe) were determined in the wastewater and in plant tissue before and after the experiment. The results showed efficiency in the decrease of N, P, turbidity, pH, solids (ST, SF) and inefficiency in the reduction of volatile solids in the wastewater. The concentration of COD, Ca, Mn, Mg, and Fe increased at the end of the experiment. Due to the absorption of some nutrients such as N and P it is possible to conclude that Salvinia auriculata is a good option for the post-treatment of the wastewater from dairy industry. However, plant senescence promotes the elevation of some elements in the effluent because in this process, nutrients that were previously retained in the plant tissue are inserted into the wastewater again. Because of this it is necessary to remove plants of the reactor in the beginning of the process of senescence.


Subject(s)
Tracheophyta , Water Pollutants, Chemical , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Dairying , Waste Disposal, Fluid , Wastewater
9.
Chemosphere ; 235: 538-542, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31276867

ABSTRACT

Lentinus crinitus is an important basidiomycete consumed by ethnic groups from the Amazon, commonly found in decomposing trees with high lignolytic and antioxidant activities. Lithium is a mood stabilizer, antiepileptic, antipsychotic, and antidepressant used in clinical practice. This study aimed to evaluate L. crinitus mycelial biomass bioaccumulated with lithium in liquid cultivation medium. The malt extract medium was added from zero to 100 mg L-1 lithium from two lithium sources (Li2CO3 and LiCl). The maximum mycelial biomass production was 7218.89 mg L-1 in the culture medium added with 5 mg L-1 lithium from LiCl. The highest lithium concentration in the mycelial biomass was of 574.72 µg g-1 produced in the culture medium with 25 mg L-1 lithium from Li2CO3. Pearson's correlation showed that Li2CO3 reduces the mycelial biomass and increases lithium bioaccumulation. The maximum translocated lithium from cultivation medium to mycelial biomass was up to 19 or 28% with LiCl or Li2CO3, respectively. Therefore, although Li2CO3 presents greater inhibition on the mycelial biomass production, it promoted greater lithium bioaccumulation in L. crinitus mycelial biomass and resulted in greater yield of lithium translocation. The equivalent daily dose of lithium for psychiatric treatment, without bioavailability studies, could be reached with 97.4 g lithium-enriched mycelial biomass and, based in the literature, for reduction of violence and criminality rates the amount could be reached with 0.24-0.58 mg. Thus, the development of lithium-enriched mycelial biomass could be an alternative functional food.


Subject(s)
Functional Food , Lentinula/metabolism , Lithium/metabolism , Basidiomycota , Biomass , Culture Media , Mycelium/growth & development , Radioisotopes
10.
Environ Monit Assess ; 191(2): 86, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30659370

ABSTRACT

This work aimed to evaluate, on a spatial and temporal scale, the effect of the flow on the concentrations of Cu and Zn in sediments from two water bodies (the Alvorada and Mandaguari Rivers). Five sediment-sampling periods were conducted, under four different streams in each sampling point (shallow/fast (SF), shallow/slow (SS), deep/fast (DF), deep/slow (DS)). Each sampling point represented the spring, the middle, and the mouth of the evaluated rivers. Some climatic variables were also evaluated, such as monthly temperature and rainfall. In addition, temperature, pH, dissolved oxygen (DO), and total solids were evaluated. Cu and Zn concentrations were obtained by FAAS. Cu and Zn levels are affected by the speed and depth of the water column. The quality of the sediments is affected by human activities in the surroundings, and according to legislation, levels of Cu and Zn in sediments offer risks of medium and high effects to aquatic biota. The highest accumulation of Cu in sediments occurs during October (221 mg kg-1) and December 2015 (225 mg kg-1), which coincides with the period of implantation of the soybean crop in the region, as well as the rain period. The increase of Cu in these periods suggests the occurrence of erosion. It can be concluded that Cu and Zn are found in large quantities in sediments, offering risk to the aquatic organisms. Cu levels exhibited direct relation with the sampling periods, with higher concentrations in rainy periods, while Zn concentrations suffer influence of the water column velocity and depth.


Subject(s)
Copper/analysis , Geologic Sediments/chemistry , Rivers/chemistry , Water Pollutants, Chemical/chemistry , Zinc/analysis , Environmental Monitoring , Human Activities , Hydrology , Rain/chemistry , Seasons , Water Quality
11.
Int J Phytoremediation ; 21(7): 714-723, 2019.
Article in English | MEDLINE | ID: mdl-30656947

ABSTRACT

This work aimed to evaluate the potential of phytoremediation using Pistia stratiotes as a plant for post-treatment of wastewater from domestic sewage. The experiment was conducted at Toledo-PR, Brazil, for 42 days, in a pilot scale model. In order to evaluate the efficiency of Pistia as a post-treatment of domestic sewage, parameters such temperature, pH, turbidity, total solids, COD, Ntotal and Ptotal contents were determined in the effluent, as well as the total contents of K, Ca, Mg, Cu, Zn, Fe, Mn, Cd, and Pb. The bioaccumulation of K, Ca, Mg, Cu, Zn, Fe, Mn, Cd, and Pb in the living tissues of P. stratiotes have also been detected. The results demonstrate efficiency removal of turbidity, Ntotal, Ptotal and COD of 98.5, 100, 100, and 79.18%, respectively. The effluent contents of nutrients and toxic metals fluctuated during the study. This can have occurred due to photosynthetic activities of microorganisms and the plant senescence. The evaluation of some parameters in the effluent, such as temperature, DO, and organic matter, influenced these facts. Low levels of DO were observed, in function to the physical barrier of macrophytes in water surface, preventing the entry of air and light. The use of P. stratiotes proved to be a good complement for post-treatment of wastewater from domestic sewage.


Subject(s)
Araceae , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Brazil , Sewage/chemistry
12.
Int J Med Mushrooms ; 20(9): 901-907, 2018.
Article in English | MEDLINE | ID: mdl-30317983

ABSTRACT

Pleurotus ostreatus is a white-rot mushroom that bioaccumulates metals in basidiocarps and vegetative mycelia. This fungus has been used in soil and water bioremediation of several heavy metals; however, there are few studies of lithium mycelial bioaccumulation for pharmacological use. The aim of this study was to evaluate lithium bioaccumulation in P. ostreatus mycelia grown in a liquid malt extract cultivation medium with Li2CO3 or LiCl. Each lithium source was added to the medium to obtain a concentration of 0, 5, 10, 15, 20, 25, 30, 40, 50, 100, or 200 mg · L-1 lithium. The highest bioaccumulation of lithium in mycelia was 1575.29 µg · g-1 upon treatment with 40 mg · L-1 Li2CO3. P. ostreatus mycelia produce biomass and bioaccumulate both lithium sources, but more lithium bioaccumulates when in the form of Li2CO3. This study provides a prospective for the development of biotechnological products with high aggregate values and alternative ways to deliver lithium and eventually other salts for pharmacological use.


Subject(s)
Lithium Carbonate/metabolism , Lithium/metabolism , Mycelium/metabolism , Pleurotus/metabolism , Dose-Response Relationship, Drug , Lithium/chemistry , Lithium Carbonate/chemistry , Mycelium/chemistry , Pleurotus/chemistry
13.
Environ Monit Assess ; 190(4): 243, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29572756

ABSTRACT

Due to intense agricultural and industrial activities, the environment has been affected by increasing amounts of pollutants, such as lead, a toxic heavy metal. When introduced to the environment, toxic metals are distributed and incorporated into the liquid medium, sediments, and aquatic biota; bioaccumulating. This research aimed to identify and quantify the levels of toxic metals present in the waters and sediments of Toledo River, compare the obtained results with legislation and other studies, as well as to evaluate the possible pollutant sources of the water body. Six water and sediment samples were taken at seven strategic sites. The concentrations of Cu, Zn, Fe, Mn, Cd, Pb, and Cr in water were compared to the maximum limits established by Brazilian legislation IN CONAMA No. 357/05, for class II fresh waters. The sediment samples were submitted to nitroperchloric digestion, and then the total concentrations of the metals were determined by flame atomic absorption spectrometry (FAAS). The toxicological quality of the Toledo River has been considerably affected by the activities carried out in its surroundings, such as extensive areas of agriculture, pig farming and industrial areas, causing concentrations of Cd, Fe, and mainly Pb, which is observed at concentrations higher than value allowed by the legislation.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Lead/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Agriculture , Animals , Brazil , Metals, Heavy/analysis , Spectrophotometry, Atomic , Swine
14.
Water Sci Technol ; 77(5-6): 1547-1557, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29595157

ABSTRACT

The effectiveness of açaí endocarp as biosorbent for removal of Cd2+, Pb2+ and Cr3+ from single solute solutions was analyzed. The biomass of açaí endocarp was characterized by scanning electron microscopy, infrared spectroscopy and determining the point of zero charge. The optimum conditions for adsorption process were obtained at solution pH 6.0 for Cd(II) removal, pH 5.0 for Pb(II) removal, and, pH 4.0 for Cr(III). Furthermore, the average optimum efficiency of biosorbent in the optimum conditions was 8, 20 and 12 g of biosorbent per litre of contaminant solution, respectively, for Cd(II), Pb(II) and Cr(III). The best dynamic equilibrium time was reached at 60 min and Langmuir's model had the best fit for Cd(II) and Cr(III) biosorption, indicating a monolayer adsorption. Freundlich's model exhibited the best fit for Pb(II) ion. Elution rates were low, indicating a strong metal interaction with the adsorbent's surface. Thermodynamic parameters showed a spontaneous and endothermal process in the case of Cd(II) and Pb(II) ions, but not for Cr(III) ion, which appears to be an exothermic process. Results show that the use of the açaí biosorbent may be a promising alternative for the remediation of polluted water, due to its low cost and highly availability.


Subject(s)
Cadmium/chemistry , Chromium/chemistry , Euterpe/chemistry , Lead/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Biomass , Hydrogen-Ion Concentration , Ions , Kinetics , Solutions , Thermodynamics , Waste Disposal, Fluid/methods
15.
Water Sci Technol ; 78(11): 2308-2320, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30699082

ABSTRACT

In order to aggregate value to the grape stem (wastes), this research aim was to increase the adsorption capacity of Cd2+ by chemical modifications on grape stems. The grape stems were milled and sieved, resulting in the biosorbent, which was used for the chemical modifications resulting in E. H2O2, E. H2SO4 and E. NaOH. These were characterized by such means as its pHPZC, Fourier transform-infrared (FTIR) spectroscopy, porosimetry, thermal stability and scanning electron microscopy. The ideal adsorption dose, the pH influence on adsorption, kinetics, equilibrium and thermodynamics studies were carried out. The FTIR spectroscopy suggests the occurrence of carboxyl, amine, and phenolic acting in Cd2+ sorption. The modification on grape biomass caused small increase in pore volume and specific surface area. The grape-based adsorbents have similar thermal stability, with irregular appearance and heterogeneity. 5.0 g kg-1 is the best adsorption dose. The modified adsorbents exhibited increase in Cd2+ removal of 66% for E. NaOH, 33% for E. H2O2 and 8.3% for E. H2SO4. The use of grape stem as adsorbent is an attractive alternative, because its wastes have great availability, low cost and great potential for metal adsorption processes.


Subject(s)
Cadmium/chemistry , Vitis/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Cadmium/analysis , Hydrogen Peroxide , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Scanning , Plant Stems/chemistry , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Water Pollutants, Chemical/analysis
16.
Environ Sci Pollut Res Int ; 24(27): 21778-21790, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28770506

ABSTRACT

The removal of Cr3+ from water solutions by biosorbents from the rind, endosperm, and endosperm + episperm of the Jatropha curcas was evaluated. Adsorption tests were performed in batch systems for evaluating the influence of the solution's pH, adsorbent mass, contact time, initial Cr3+ concentrations, and solution temperature during the adsorption process. Kinetic, adsorption isotherm, and thermodynamic studies were performed to investigate the mechanisms that control adsorption. Ideal conditions for the adsorption process included pH of the solution of 5.5 and 8 g L-1 adsorbent mass, within 60 min time contact between adsorbent and adsorbate. Maximum adsorption capacities by Langmuir model for rind, endosperm, and endosperm + episperm of the J. curcas were, respectively, 22.11, 18.20, and 22.88 mg g-1, with the occurrence of chemosorption in mono and multilayers. Results show that the biosorbents obtained from J. curcas have a high potential to recuperate Cr3+ from contaminated water sources.


Subject(s)
Chromium/isolation & purification , Jatropha/metabolism , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Chromium/chemistry , Kinetics , Temperature , Thermodynamics , Water Pollutants, Chemical/chemistry
17.
Water Sci Technol ; 69(1): 163-9, 2014.
Article in English | MEDLINE | ID: mdl-24434983

ABSTRACT

The efficiency of Moringa (Moringa oleifera Lam.) seeds for removing lead ions (Pb(2+)) from water was evaluated. Parameters such as solution pH, adsorbent mass, contact time between solution and adsorbent, isotherms, thermodynamic, kinetics, and desorption were evaluated. The maximum adsorption capacity of the biosorbent was found to be 12.24 mg g(-1). In order to verify the effectiveness of this material, comparative studies were performed with activated carbon under the same optimal conditions for the construction of isotherms and the desorption process. Average desorption rate values led to the assumption that a strong interaction took place between the adsorbents and the metal ions. Thus, it has been concluded that the biosorbent studied herein can be considered very effective and feasible for remediating Pb(2+)-contaminated solutions, since this material is itself an untreated and low-cost byproduct.


Subject(s)
Lead/metabolism , Moringa oleifera/metabolism , Seeds/metabolism , Adsorption , Hydrogen-Ion Concentration
18.
Water Sci Technol ; 68(1): 227-33, 2013.
Article in English | MEDLINE | ID: mdl-23823559

ABSTRACT

The effectiveness of Crambe abyssinica Hochst seeds by-product as a biosorbent for the removal of cadmium ions from wastewater was analyzed. The biomass of crambe was characterized by scanning electron microscopy, infrared spectroscopy and determining the point of zero charge. The optimum adsorption conditions obtained were 400 mg of biomass in a solution of pH 6.0 and contact time of 60 min to remove 19.342 mg g(-1) cadmium ions. The isotherms of adsorption were constructed and, according to the mathematical linearization, the best fitting followed the Freundlich and Dubinin-Radushkevich models, describing a multilayer adsorption and chemical interaction, also confirmed by the pseudo-second order model and enthalpy value. In the desorption process, about 79% of cadmium ions that had been adsorbed were recovered. The same conditions applied for studying the isotherms of adsorption and desorption were used for comparative study with activated carbon. It was concluded that the use of crambe by-product as biosorbent for cadmium removal in wastewaters was not only a viable alternative to activated carbon, but also required no previous treatment, so it represents a sustainable material with high applicability and low environmental impact.


Subject(s)
Cadmium/chemistry , Crambe Plant , Seeds/chemistry , Water Pollutants, Chemical/chemistry , Adsorption
SELECTION OF CITATIONS
SEARCH DETAIL
...