Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 3933, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30850648

ABSTRACT

The purpose of this work was to evaluate the physicochemical properties, the cytotoxicity and in vivo biocompatibility of MTA Repair HP (MTA HP) and White MTA (WMTA). The setting time, flow, radiopacity and water solubility were assessed. To the cytotoxicity assay, primary human osteoblast cells were exposed to several dilutions of both materials eluates. MTT assay, apoptosis assay and cell adhesion assay were performed. The in vivo biocompatibility was evaluated through histological analysis using different staining techniques. No differences were observed between MTA HP and WMTA for setting time, radiopacity, solubility and water absorption (P > 0.05). However, MTA HP showed a significantly higher flow when compared to WMTA (P < 0.05). Cell viability results revealed that the extracts of WMTA and MTA HP promoted the viability of osteoblasts. After incubation of cells with the endodontic cement extracts, the percentage of apoptotic or necrotic cells was very low (<3%). Furthermore, SEM results showed a high degree of cell proliferation and adhesion on both groups. MTA HP showed similar in vivo biocompatibility to the WMTA and the control group in all time-points. The MTA HP presented adequate physicochemical and biological properties with improved flow ability when compared to WMTA. Such improved flow ability may be a result of the addition of a plasticizing agent and should be related to an improvement in the handling of MTA HP.


Subject(s)
Aluminum Compounds/chemistry , Aluminum Compounds/toxicity , Calcium Compounds/chemistry , Calcium Compounds/toxicity , Oxides/chemistry , Oxides/toxicity , Root Canal Filling Materials/chemistry , Root Canal Filling Materials/toxicity , Silicates/chemistry , Silicates/toxicity , Animals , Apoptosis/drug effects , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Drug Combinations , Humans , Male , Materials Testing , Microscopy, Electron, Scanning , Osteoblasts/cytology , Osteoblasts/drug effects , Rats , Rats, Wistar , Rheology , Solubility , Subcutaneous Tissue/drug effects , Subcutaneous Tissue/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...