Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 14: 201, 2013 Mar 22.
Article in English | MEDLINE | ID: mdl-23521840

ABSTRACT

BACKGROUND: Eucalyptus is one of the most important sources of industrial cellulose. Three species of this botanical group are intensively used in breeding programs: E. globulus, E. grandis and E. urophylla. E. globulus is adapted to subtropical/temperate areas and is considered a source of high-quality cellulose; E. grandis grows rapidly and is adapted to tropical/subtropical climates; and E. urophylla, though less productive, is considered a source of genes related to robustness. Wood, or secondary xylem, results from cambium vascular differentiation and is mostly composed of cellulose, lignin and hemicelluloses. In this study, the xylem transcriptomes of the three Eucalyptus species were investigated in order to provide insights on the particularities presented by each of these species. RESULTS: Data analysis showed that (1) most Eucalyptus genes are expressed in xylem; (2) most genes expressed in species-specific way constitutes genes with unknown functions and are interesting targets for future studies; (3) relevant differences were observed in the phenylpropanoid pathway: E. grandis xylem presents higher expression of genes involved in lignin formation whereas E. urophylla seems to deviates the pathway towards flavonoid formation; (4) stress-related genes are considerably more expressed in E. urophylla, suggesting that these genes may contribute to its robustness. CONCLUSIONS: The comparison of these three transcriptomes indicates the molecular signatures underlying some of their distinct wood characteristics. This information may contribute to the understanding of xylogenesis, thus increasing the potential of genetic engineering approaches aiming at the improvement of Eucalyptus forest plantations productivity.


Subject(s)
Eucalyptus/genetics , Transcriptome , Cell Wall/genetics , Cell Wall/metabolism , Contig Mapping , Databases, Factual , Eucalyptus/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Sequence Analysis, RNA , Transcription Factors/genetics , Transcription Factors/metabolism , Xylem/genetics , Xylem/metabolism
2.
PLoS One ; 8(2): e56445, 2013.
Article in English | MEDLINE | ID: mdl-23424660

ABSTRACT

Uracil phosphoribosyltransferase (UPRT) catalyzes the conversion of uracil and 5-phosphoribosyl-α-1-pyrophosphate (PRPP) to uridine 5'-monophosphate (UMP) and pyrophosphate (PP(i)). UPRT plays an important role in the pyrimidine salvage pathway since UMP is a common precursor of all pyrimidine nucleotides. Here we describe cloning, expression and purification to homogeneity of upp-encoded UPRT from Mycobacterium tuberculosis (MtUPRT). Mass spectrometry and N-terminal amino acid sequencing unambiguously identified the homogeneous protein as MtUPRT. Analytical ultracentrifugation showed that native MtUPRT follows a monomer-tetramer association model. MtUPRT is specific for uracil. GTP is not a modulator of MtUPRT ativity. MtUPRT was not significantly activated or inhibited by ATP, UTP, and CTP. Initial velocity and isothermal titration calorimetry studies suggest that catalysis follows a sequential ordered mechanism, in which PRPP binding is followed by uracil, and PP(i) product is released first followed by UMP. The pH-rate profiles indicated that groups with pK values of 5.7 and 8.1 are important for catalysis, and a group with a pK value of 9.5 is involved in PRPP binding. The results here described provide a solid foundation on which to base upp gene knockout aiming at the development of strategies to prevent tuberculosis.


Subject(s)
Mycobacterium tuberculosis/enzymology , Pentosyltransferases/chemistry , Pentosyltransferases/metabolism , Allosteric Regulation , Amino Acid Sequence , Hydrogen-Ion Concentration , Kinetics , Molecular Sequence Data , Nucleotides/metabolism , Pentosyltransferases/genetics , Pentosyltransferases/isolation & purification , Polymerase Chain Reaction , Sequence Analysis , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...