Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Trop Med Infect Dis ; 7(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35202224

ABSTRACT

The necessity of drug combinations to treat leishmaniasis came to the surface mainly because of the toxicity of current treatments and the emergence of resistant strains. The calpain inhibitor MDL28170 has previously shown anti-Leishmania activity, therefore its use in association with standard drugs could provide a new alternative for the treatment strategy against leishmaniasis. In this study, we analyzed the potential of the combination of MDL28170 and the antileishmanial drug amphotericin B against Leishmania amazonensis and Leishmania chagasi. The compounds were tested in the combination of the ½ × IC50 value of MDL28170 plus the » × IC50 value of amphotericin B, which led to an increment in the anti-promastigote activity when compared to the single drug treatments. This drug association revealed several and severe morphophysiological changes on parasite cells, such as loss of plasma membrane integrity, reduced size of flagellum, and depolarization of mitochondrial membrane potential besides increased reactive oxygen species production. In addition, the combination of both drugs had a deleterious effect on the Leishmania-macrophage interaction, reflecting in a significant anti-amastigote action, which achieved a reduction of 50% in the association index. These results indicate that the combination treatment proposed here may represent a new alternative for leishmaniasis chemotherapy.

2.
J Fungi (Basel) ; 7(6)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071195

ABSTRACT

The repurposing strategy was applied herein to evaluate the effects of lopinavir, an aspartic protease inhibitor currently used in the treatment of HIV-infected individuals, on the globally widespread opportunistic human fungal pathogen Candida albicans by using in silico, in vitro and in vivo approaches in order to decipher its targets on fungal cells and its antifungal mechanisms of action. Secreted aspartic proteases (Saps) are the obviously main target of lopinavir. To confirm this hypothesis, molecular docking assays revealed that lopinavir bound to the Sap2 catalytic site of C. albicans as well as inhibited the Sap hydrolytic activity in a typically dose-dependent manner. The inhibition of Saps culminated in the inability of C. albicans yeasts to assimilate the unique nitrogen source (albumin) available in the culture medium, culminating with fungal growth inhibition (IC50 = 39.8 µM). The antifungal action of lopinavir was corroborated by distinct microscopy analyses, which evidenced drastic and irreversible changes in the morphology that justified the fungal death. Furthermore, our results revealed that lopinavir was able to (i) arrest the yeasts-into-hyphae transformation, (ii) disturb the synthesis of neutral lipids, including ergosterol, (iii) modulate the surface-located molecules, such as Saps and mannose-, sialic acid- and N-acetylglucosamine-containing glycoconjugates, (iv) diminish the secretion of hydrolytic enzymes, such as Saps and esterase, (v) negatively influence the biofilm formation on polystyrene surface, (vi) block the in vitro adhesion to epithelial cells, (vii) contain the in vivo infection in both immunocompetent and immunosuppressed mice and (viii) reduce the Sap production by yeasts recovered from kidneys of infected animals. Conclusively, the exposed results highlight that lopinavir may be used as a promising repurposing drug against C. albicans infection as well as may be used as a lead compound for the development of novel antifungal drugs.

3.
J Enzyme Inhib Med Chem ; 35(1): 629-638, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32037904

ABSTRACT

Phialophora verrucosa causes several fungal human diseases, mainly chromoblastomycosis, which is extremely difficult to treat. Several studies have shown that human immunodeficiency virus peptidase inhibitors (HIV-PIs) are attractive candidates for antifungal therapies. This work focused on studying the action of HIV-PIs on peptidase activity secreted by P. verrucosa and their effects on fungal proliferation and macrophage interaction. We detected a peptidase activity from P. verrucosa able to cleave albumin, sensitive to pepstatin A and HIV-PIs, especially lopinavir, ritonavir and amprenavir, showing for the first time that this fungus secretes aspartic-type peptidase. Furthermore, lopinavir, ritonavir and nelfinavir reduced the fungal growth, causing remarkable ultrastructural alterations. Lopinavir and ritonavir also affected the conidia-macrophage adhesion and macrophage killing. Interestingly, P. verrucosa had its growth inhibited by ritonavir combined with either itraconazole or ketoconazole. Collectively, our results support the antifungal action of HIV-PIs and their relevance as a possible alternative therapy for fungal infections.


Subject(s)
Antifungal Agents/pharmacology , Aspartic Acid Proteases/antagonists & inhibitors , HIV Protease Inhibitors/pharmacology , Macrophages/drug effects , Phialophora/drug effects , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Aspartic Acid Proteases/metabolism , Carbamates/chemical synthesis , Carbamates/chemistry , Carbamates/pharmacology , Dose-Response Relationship, Drug , Furans , HIV Protease Inhibitors/chemical synthesis , HIV Protease Inhibitors/chemistry , Humans , Lopinavir/chemical synthesis , Lopinavir/chemistry , Lopinavir/pharmacology , Macrophages/metabolism , Microbial Sensitivity Tests , Molecular Structure , Phialophora/enzymology , Phialophora/growth & development , Ritonavir/chemical synthesis , Ritonavir/chemistry , Ritonavir/pharmacology , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacology
4.
Med Mycol ; 58(7): 973-986, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-31989170

ABSTRACT

The emerging opportunistic pathogens comprising the Candida haemulonii complex (C. haemulonii [Ch], C. duobushaemulonii [Cd] and C. haemulonii var. vulnera[Chv]) are notable for their intrinsic antifungal resistance. Different clinical manifestations are associated with these fungal infections; however, little is known about their biology and potential virulence attributes. Herein, we evaluated some surface properties of 12 clinical isolates of Ch (n = 5), Cd (n = 4) and Chv (n = 3) as well as their virulence on murine macrophages and Galleria mellonella larvae. Scanning electron microscopy demonstrated the presence of homogeneous populations among the species of the C. haemulonii complex, represented by oval yeasts with surface irregularities able to form aggregates. Cell surface hydrophobicity was isolate-specific, exhibiting high (16.7%), moderate (25.0%) and low (58.3%) hydrophobicity. The isolates had negative surface charge, except for one. Mannose/glucose- and N-acetylglucosamine-containing glycoconjugates were evidenced in considerable amounts in all isolates; however, the surface expression of sialic acid was poorly detected. Cd isolates presented significantly higher amounts of chitin than Ch and Chv. Membrane sterol and lipid bodies, containing neutral lipids, were quite similar among all fungi studied. All isolates adhered to inert surfaces in the order: polystyrene > poly-L-lysine-coated glass > glass. Likewise, they interacted with murine macrophages in a quite similar way. Regarding in vivo virulence, the C. haemulonii species complex were able to kill at least 80% of the larvae after 120 hours. Our results evidenced the ability of C. haemulonii complex to produce potential surface-related virulence attributes, key components that actively participate in the infection process described in Candida spp.


Subject(s)
Adhesiveness/drug effects , Antifungal Agents/therapeutic use , Candida/isolation & purification , Candidiasis/drug therapy , Candidiasis/physiopathology , Drug Resistance, Multiple, Fungal/drug effects , Virulence/drug effects , Arthrodermataceae/isolation & purification , Brazil , Humans , Macrophages/drug effects , Spores, Fungal/ultrastructure
5.
Parasitol Int ; 73: 101968, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31398485

ABSTRACT

The current treatments for leishmaniasis bump into several obstacles, including low efficacy, high costs, long monitoring, and several/severe side effects. Consequently, the search for promising compounds is a tangible need. Recently, we reported the anti-Leishmania amazonensis action of asymmetric peptidomimetic compounds containing tartaric acid as core, especially the 157 derivative that contains valine/leucine substituents in its structure. Herein, we decipher the multiple effects of 157 on the L. amazonensis physiology and on the interaction process with macrophages. The peptidomimetic 157 induced significant changes on the morphometric (internal granularity reduction as judged by flow cytometer) and on the ultrastructural (round-shaped parasites, presence of plasma membrane blebs and flagellum loss as visualized by scanning electron microscopy) aspects of treated promastigotes compared to untreated ones. The alteration on the plasma membrane permeability was confirmed by the passive incorporation of propidium iodide in 157-treated promastigotes. In parallel, the low viability of promastigotes was also associated to the perturbation of mitochondrial transmembrane electric potential. These combined results demonstrated that 157 induced irreversible metabolic damages that led to L. amazonensis death. The pre-treatment of promastigotes with 157 inhibited the association index with macrophages in a typically dose-dependent manner. Additionally, 157 significantly reduced the number of intramacrophage amastigotes after 72 h of drug contact, presenting an IC50 value of 30.2 µM. Under our experimental conditions, 157 showed higher toxicity to promastigotes and amastigotes when compared to RAW cells, resulting in good selective indexes. Therefore, 157 can be considered as an interesting candidate for further optimization, since its synthesis is simple and cheap.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Leishmaniasis/drug therapy , Peptidomimetics/pharmacology , Tartrates/pharmacology , Leucine/chemistry , Macrophages/drug effects , Valine/chemistry
6.
Microbiology (Reading) ; 165(8): 852-862, 2019 08.
Article in English | MEDLINE | ID: mdl-31140968

ABSTRACT

Annexins are multifunctional proteins that bind to phospholipid membranes in a calcium-dependent manner. Annexins play a myriad of critical and well-characterized roles in mammals, ranging from membrane repair to vesicular secretion. The role of annexins in the kingdoms of bacteria, protozoa and fungi have been largely overlooked. The fact that there is no known homologue of annexins in the yeast model organism Saccharomyces cerevisiae may contribute to this gap in knowledge. However, annexins are found in most medically important fungal pathogens, with the notable exception of Candida albicans. In this study we evaluated the function of the one annexin gene in Cryptococcus neoformans, a causative agent of cryptococcosis. This gene CNAG_02415, is annotated in the C. neoformans genome as a target of calcineurin through its transcription factor Crz1, and we propose to update its name to cryptococcal annexin, AnnexinC1. C. neoformans strains deleted for AnnexinC1 revealed no difference in survival after exposure to various chemical stressors relative to wild-type strain, as well as no major alteration in virulence or mating. The only alteration observed in strains deleted for AnnexinC1 was a small increase in the titan cells' formation in vitro. The preservation of annexins in many different fungal species suggests an important function, and therefore the lack of a strong phenotype for annexin-deficient C. neoformans indicates either the presence of redundant genes that can compensate for the absence of AnnexinC1 function or novel functions not revealed by standard assays of cell function and pathogenicity.


Subject(s)
Annexins/genetics , Cryptococcus neoformans , Animals , Cryptococcus neoformans/cytology , Cryptococcus neoformans/genetics , Cryptococcus neoformans/metabolism , Fungal Proteins , Genes, Fungal , Mice , Phenotype , Phylogeny , Virulence
7.
Med Mycol ; 57(8): 1024-1037, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-30753649

ABSTRACT

Candida parapsilosis sensu stricto (C. parapsilosis) has emerged as the second/third commonest Candida species isolated from hospitals worldwide. Candida spp. possess numerous virulence attributes, including peptidases that play multiple roles in both physiological and pathological events. So, fungal peptidases are valid targets for new drugs development. With this premise in mind, we have evaluated the effect of serine peptidase inhibitors (SPIs) on both cell biology and virulence aspects of C. parapsilosis. First, five different SPIs, phenylmethylsulfonyl fluoride, benzamidine, 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride, N-α-tosyl-L-lysine chloromethyl ketone hydrochloride, and N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) were tested, and TPCK showed the best efficacy to arrest fungal growth. Subsequently, the ability of TPCK to modulate physiopathological processes was investigated. Overall, TPCK was able to (i) inhibit the cell-associated serine peptidase activities, (ii) promote morphometric and ultrastructural alterations, (iii) induce an increase in the intracellular oxidation level, which culminates in a vigorous lipid peroxidation and accumulation of neutral lipids in cytoplasmic inclusions, (iv) modulate the expression/exposition of surface structures, such as mannose/glucose-rich glycoconjugates, N-acetylglucosamine-containing molecules, chitin, polypeptides and surface aspartic peptidases, (v) reduce the adhesion to either polystyrene or glass surfaces as well as to partially disarticulate the mature biofilm, (vi) block the fungal interaction with macrophages, and (vii) protect Galleria mellonella from fungal infection, enhancing larvae survivability. Altogether, these results demonstrated that TPCK induced several changes over fungal biology besides the interference with aspects associated to C. parapsilosis virulence and pathogenesis, which indicates that SPIs could be novel promising therapeutic agents in dealing with candidiasis.


Subject(s)
Antifungal Agents/pharmacology , Candida parapsilosis/drug effects , Candidiasis/prevention & control , Serine Proteinase Inhibitors/pharmacology , Tosylphenylalanyl Chloromethyl Ketone/pharmacology , Animals , Antifungal Agents/administration & dosage , Candida parapsilosis/cytology , Candida parapsilosis/growth & development , Cell Adhesion/drug effects , Disease Models, Animal , Larva/microbiology , Lepidoptera/microbiology , Oxidative Stress , Serine Proteinase Inhibitors/administration & dosage , Survival Analysis , Tosylphenylalanyl Chloromethyl Ketone/administration & dosage , Treatment Outcome , Virulence/drug effects
9.
Int J Antimicrob Agents ; 48(4): 440-4, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27499433

ABSTRACT

There is a general lack of effective and non-toxic chemotherapeutic agents against Chagas' disease despite more than a century of research. In this regard, we have verified the impact of human immunodeficiency virus aspartic peptidase inhibitors (HIV-PIs) on the viability and morphology of infective trypomastigote forms of Trypanosoma cruzi as well as on the aspartic peptidase and proteasome activities produced by this parasite. The effects of HIV-PIs on viability were assessed by counting motile parasites in a Neubauer chamber. Morphological alterations were detected by light microscopy of Giemsa-stained smears and scanning electron microscopy. Modulation of aspartic peptidase and proteasome activities by the HIV-PIs was measured by cleavage of fluorogenic peptide substrates. The majority of the HIV-PIs (6/9) were able to drastically decrease the viability of trypomastigotes after 4 h of treatment, with nelfinavir and lopinavir being the most effective compounds presenting LD50 values of 8.6 µM and 10.6 µM, respectively. Additionally, both HIV-PIs were demonstrated to be effective in a time- and cell density-dependent manner. Treatment with nelfinavir and lopinavir caused many morphological/ultrastructural alterations in trypomastigotes; parasites became round in shape, with reduced cell size and flagellar shortening. Nelfinavir and lopinavir were also capable of significantly inhibiting the aspartic peptidase and proteasome activities measured in trypomastigote extracts. These results strengthen the data on the positive effects of HIV-PIs on parasitic infections, possibly by targeting the parasite aspartic peptidase(s) and proteasome(s), opening a new possibility for the use of these clinically approved drugs as an alternative chemotherapy to treat Chagas' disease.


Subject(s)
Antiprotozoal Agents/pharmacology , HIV Protease Inhibitors/pharmacology , Trypanosoma cruzi/drug effects , Trypanosomiasis/parasitology , Cell Survival/drug effects , Locomotion/drug effects , Microscopy , Trypanosoma cruzi/cytology , Trypanosoma cruzi/physiology , Trypanosomiasis/drug therapy
10.
Biofouling ; 32(7): 737-49, 2016 08.
Article in English | MEDLINE | ID: mdl-27309801

ABSTRACT

Reported herein is the ability of Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans conidia to adhere, differentiate into hyphae and form biofilms on both polystyrene and lung epithelial cells. To different degrees, all of the fungi adhered to polystyrene after 4 h, with a predominance of those with germinated conidia. Prolonged fungi-polystyrene contact resulted in the formation of a monolayer of intertwined mycelia, which was identified as a typical biofilm structure due to the presence of a viable mycelial biomass, extracellular matrix and enhanced antifungal resistance. Ultrastructural details were revealed by SEM and CLSM, showing the dense compaction of the mycelial biomass and the presence of channels within the organized biofilm. A similar biofilm structure was observed following the co-culture of each fungus with A549 cells, revealing a mycelial trap covering all of the lung epithelial monolayer. Collectively, these results highlight the potential for biofilm formation by these clinically relevant fungal pathogens.


Subject(s)
Ascomycota/physiology , Biofilms/growth & development , Epithelial Cells/microbiology , Hyphae/growth & development , Polystyrenes , Scedosporium/physiology , A549 Cells , Ascomycota/ultrastructure , Bacterial Adhesion , Biomass , Humans , Microscopy, Confocal , Microscopy, Electron, Scanning , Polystyrenes/chemistry , Scedosporium/ultrastructure
11.
PLoS One ; 9(1): e87659, 2014.
Article in English | MEDLINE | ID: mdl-24498160

ABSTRACT

BACKGROUND: Human cutaneous leishmaniasis is caused by distinct species, including Leishmania amazonensis. Treatment of cutaneous leishmaniasis is far from satisfactory due to increases in drug resistance and relapses, and toxicity of compounds to the host. As a consequence for this situation, the development of new leishmanicidal drugs and the search of new targets in the parasite biology are important goals. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the mechanism of death pathway induced by the calpain inhibitor MDL28170 on Leishmania amazonensis promastigote forms. The combined use of different techniques was applied to contemplate this goal. MDL28170 treatment with IC50 (15 µM) and two times the IC50 doses induced loss of parasite viability, as verified by resazurin assay, as well as depolarization of the mitochondrial membrane, which was quantified by JC-1 staining. Scanning and transmission electron microscopic images revealed drastic alterations on the parasite morphology, some of them resembling apoptotic-like death, including cell shrinking, surface membrane blebs and altered chromatin condensation pattern. The lipid rearrangement of the plasma membrane was detected by Annexin-V labeling. The inhibitor also induced a significant increase in the proportion of cells in the sub-G0/G1 phase, as quantified by propidium iodide staining, as well as genomic DNA fragmentation, detected by TUNEL assay. In cells treated with MDL28170 at two times the IC50 dose, it was also possible to observe an oligonucleossomal DNA fragmentation by agarose gel electrophoresis. CONCLUSIONS/SIGNIFICANCE: The data presented in the current study suggest that MDL28170 induces apoptotic marker expression in promastigotes of L. amazonensis. Altogether, the results described in the present work not only provide a rationale for further exploration of the mechanism of action of calpain inhibitors against trypanosomatids, but may also widen the investigation of the potential clinical utility of calpain inhibitors in the chemotherapy of leishmaniases.


Subject(s)
Apoptosis/drug effects , Cysteine Proteinase Inhibitors/pharmacology , DNA Fragmentation/drug effects , DNA, Protozoan/metabolism , Dipeptides/pharmacology , Gene Expression Regulation/drug effects , Protozoan Proteins/biosynthesis , DNA, Protozoan/genetics , G1 Phase/drug effects , Humans , Leishmania , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/enzymology , Membrane Potential, Mitochondrial/drug effects , Protozoan Proteins/genetics , Resting Phase, Cell Cycle/drug effects
12.
FEMS Yeast Res ; 13(8): 831-48, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24103069

ABSTRACT

The production of virulence attributes in three reference strains and 11 clinical isolates primarily identified as Candida parapsilosis was evaluated. Morphological and phenotypical tests were not able to discriminate among the three species of the C. parapsilosis complex; consequently, molecular methods were applied to solve this task. After employing polymerase chain reaction-based methods, nine clinical strains were identified as C. parapsilosis sensu stricto and two as C. orthopsilosis. Protease, catalase, and hemolysin were produced by all 14 strains, while 92.9% and 78.6% of strains secreted, respectively, esterase and phytase. No phospholipase producers were detected. Mannose/glucose, N-acetylglucosamine, and sialic acid residues were detected at the surface of all strains, respectively, in high, medium, and low levels. All strains presented elevated surface hydrophobicity and similar ability to form biofilm. However, the adhesion to inert substrates and mammalian cells was extremely diverse, showing typical intrastrain variations. Overall, the strains showed (1) predilection to adhere to plastic over glass and the number of pseudohyphae was more prominent than yeasts and (2) the interaction process was slightly enhanced in macrophages than fibroblasts, with the majority of fungal cells detected inside them. Positive/negative correlations were demonstrated among the production of these virulence traits in C. parapsilosis complex.


Subject(s)
Candida/classification , Phenotype , Biofilms , Candida/physiology , Candida/ultrastructure , Cell Membrane/chemistry , Cell Membrane/metabolism , Glycosylation , Humans , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Molecular Typing , Phylogeny , RNA, Fungal , RNA, Ribosomal, 28S , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...