Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Radiography (Lond) ; 29(6): 1093-1099, 2023 10.
Article in English | MEDLINE | ID: mdl-37757676

ABSTRACT

INTRODUCTION: To describe CT findings in patients with confirmed Covid-19 infection and correlate them with the disease evolution stages. METHODS: This is a historical cohort observational analytical study carried out with outpatients, inpatients, and emergency patients from a private hospital in Maceió/AL, Brazil. The final sample consisted of 390 patients with positive RT-PCR for Covid-19 with available laboratory tests and chest CT results. RESULTS: The most frequent initial symptoms were cough, fever, dyspnea and headache. The most commonly found comorbidities were hypertension, diabetes mellitus and obesity. A total of 22% of the CT scans showed no alterations; ground-glass opacity was the most frequently found one. There was a significant association between age, comorbidities, pulmonary involvement, ground-glass opacity, mosaic attenuation and percentage of pulmonary involvement with death. The analysis of the disease stages showed a significant association with laboratory data (CRP and platelet levels), ground-glass opacity and mosaic attenuation with the disease evolution stages in relation to the days since symptom onset. CONCLUSION: The disease evolution of Covid-19 occurs in stages, and this study describes tomographic findings in patients with confirmed Covid-19 infection and shows they vary depending on the disease evolution stages. IMPLICATIONS FOR PRACTICE: This paper provides important addition to the various records that have been accumulated through the Covid-19 pandemic.


Subject(s)
COVID-19 , Humans , COVID-19/diagnostic imaging , SARS-CoV-2 , Pandemics , COVID-19 Testing , Clinical Laboratory Techniques/methods , Tomography, X-Ray Computed/methods
2.
J Am Chem Soc ; 123(43): 10595-606, 2001 Oct 31.
Article in English | MEDLINE | ID: mdl-11673991

ABSTRACT

Reduction of the dication [(eta5-Ind)(Cp)Mo[P(OMe)3]2]2+ (1(2+)) and oxidation of the neutral complex (eta3-Ind)(Cp)Mo[P(OMe)3]2 (1) proceed through a one-electron intermediate, 1+. The structures of 1(2+) and 1 have been determined by X-ray diffraction studies, which show the slip-fold distortion angle, Omega, of the indenyl ring increasing from 4.1 degrees in 1(2+) to 21.7 degrees in 1. Cyclic voltammetry and bulk electrolysis were employed to define the thermodynamics and heterogeneous charge-transfer kinetics of reactions 1(2+) + e(-) <==> 1+ and 1+ + e(-) <==> 1: DeltaE1/2 = 113 mV in CH3CN and 219 mV in CH2Cl2/0.1 M [NBu4][PF6]; k(s) = 0.4 cm x s(-1) for 1(2+)/1+ couple, 1.0 cm x s(-1) for 1+/1 couple in CH3CN. ESR spectra of 1+ displayed a surprisingly large hyperfine splitting (7.4 x 10(-4) x cm(-1)) from a single 1H nucleus, and spectra of the partially deuterated indenyl analogue confirmed assignment of a(H) to the H2 proton of the indenyl ring. The related eta5 18-electron complexes [(eta5-Ind)(Cp)Mo(dppe)]2+ (2(2+)) (dppe = diphenylphosphinoethane) and (eta5-Ind)(Cp)Mo(CN)2 (3) may also be reduced in two successive one-electron steps; ESR spectra of the radicals 2+ and 3- showed a similarly large a(H2) (8.7 x 10(-4) and 6.4 x 10(-4) x cm(-1), respectively). Molecular orbital calculations (density functional theory, DFT, and extended Hückel, EH) predict metal-indenyl bonding in 1+ that is approximately midway between that of the eta5 and eta3 hapticities (e.g., Omega = 11.4 degrees ). DFT results show that the large value of a(H2) arises from polarization of the indenyl-H2 by both inner-sphere orbitals and the singly occupied molecular orbital (SOMO) of 1+. The measured ks values are consistent with only minor inner-sphere reorganizational energies being necessary for the electron-transfer reactions, showing that a full eta5/eta3 hapticity change may require only small inner-sphere reorganization energies when concomitant with a pair of stepwise one-electron-transfer processes. The indenyl ligand in 1+ is best described as donating approximately four pi-electrons to Mo by combining a traditional eta3 linkage with two "half-strength" Mo-C bonds.

SELECTION OF CITATIONS
SEARCH DETAIL
...