Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(4)2023 Apr 02.
Article in English | MEDLINE | ID: mdl-37111612

ABSTRACT

Benznidazole (BZ) tablets are the currently prescribed treatment for Chagas disease. However, BZ presents limited efficacy and a prolonged treatment regimen with dose-dependent side effects. The design and development of new BZ subcutaneous (SC) implants based on the biodegradable poly-ɛ-caprolactone (PCL) is proposed in this study for a controlled release of BZ and to improve patient compliance. The BZ-PCL implants were characterized by X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy, which indicated that BZ remains in its crystalline state dispersed in the polymer matrix with no polymorphic transitions. BZ-PCL implants, even at the highest doses, induce no alteration of the levels of hepatic enzymes in treated animals. BZ release from implants to blood was monitored in plasma during and after treatment in healthy and infected animals. Implants at equivalent oral doses increase the body's exposure to BZ in the first days compared with oral therapy, exhibiting a safe profile and allowing sustained BZ concentrations in plasma to induce a cure of all mice in the experimental model of acute infection by the Y strain of T. cruzi. BZ-PCL implants have the same efficacy as 40 daily oral doses of BZ. Biodegradable BZ implants are a promising option to reduce failures related to poor adherence to treatment, with more comfort for patients, and with sustained BZ plasma concentration in the blood. These results are relevant for optimizing human Chagas disease treatment regimens.

2.
Mem Inst Oswaldo Cruz ; 117: e200501, 2022.
Article in English | MEDLINE | ID: mdl-35613156

ABSTRACT

Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. There is an urgent need for safe, effective, and accessible new treatments since the currently approved drugs have serious limitations. Drug development for Chagas disease has historically been hampered by the complexity of the disease, critical knowledge gaps, and lack of coordinated R&D efforts. This review covers some of the translational challenges associated with the progression of new chemical entities from preclinical to clinical phases of development, and discusses how recent technological advances might allow the research community to answer key questions relevant to the disease and to overcome hurdles in R&D for Chagas disease.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Chagas Disease/drug therapy , Chagas Disease/parasitology , Drug Development , Drug Discovery , Humans , Neglected Diseases/drug therapy , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use
3.
Mem. Inst. Oswaldo Cruz ; 117: e200501, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1375909

ABSTRACT

Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. There is an urgent need for safe, effective, and accessible new treatments since the currently approved drugs have serious limitations. Drug development for Chagas disease has historically been hampered by the complexity of the disease, critical knowledge gaps, and lack of coordinated R&D efforts. This review covers some of the translational challenges associated with the progression of new chemical entities from preclinical to clinical phases of development, and discusses how recent technological advances might allow the research community to answer key questions relevant to the disease and to overcome hurdles in R&D for Chagas disease.

4.
Parasitology ; 148(11): 1320-1327, 2021 09.
Article in English | MEDLINE | ID: mdl-34247670

ABSTRACT

Drug combinations have been evaluated for Chagas disease in an attempt to improve efficacy and safety. In this line, the objective of this work is to assess the effects of treatment with nitro drugs combinations using benznidazole (BZ) or nifurtimox (NFX) plus the sulfone metabolite of fexinidazole (fex-SFN) in vitro and in vivo on Trypanosoma cruzi infection. The in vitro interaction of fex-SFN and BZ or NFX against infected H9c2 cells by the Y strain was classified as an additive (0.5⩾ΣFIC<4), suggesting the possibility of a dose reduction in the in vivo T. cruzi infection. Next, the effect of combining suboptimal doses was assessed in an acute model of murine T. cruzi infection. Drug combinations led to a faster suppression of parasitemia than monotherapies. Also, the associations led to higher cure levels than those in the reference treatment BZ 100 mg day−1 (57.1%) (i.e. 83.3% with BZ/fex-SFN and 75% with NFX/fex-SFN). Importantly, toxic effects resulting from the associations were not observed, according to weight gain and hepatic enzyme levels in the serum of experimental animals. Taken together, this study is a starting point to explore the potential effects of nitro drugs combinations in preclinical models of kinetoplastid-related infections.


Subject(s)
Chagas Disease/drug therapy , Nitro Compounds/therapeutic use , Animals , Drug Therapy, Combination , Female , Humans , Inhibitory Concentration 50 , Mice , Neglected Diseases/drug therapy , Nifurtimox/adverse effects , Nifurtimox/therapeutic use , Nitro Compounds/adverse effects , Nitroimidazoles/adverse effects , Nitroimidazoles/metabolism , Nitroimidazoles/therapeutic use , Real-Time Polymerase Chain Reaction , Sulfones/adverse effects , Sulfones/therapeutic use
5.
Parasitol Res ; 119(6): 1845, 2020 06.
Article in English | MEDLINE | ID: mdl-32307581

ABSTRACT

The authors regret that Philipp E Scherer's name was spelt incorrectly in the author list. The name of the author is now corrected above.

6.
Parasitol Res ; 119(6): 1829-1843, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32206887

ABSTRACT

The underlying pathogenic mechanisms of cardiomyopathy in Chagas disease are still unsolved. In order to better clarify the role of fat on the evolution of cardiomyopathy, the present study employed three murine models of chronic Trypanosoma cruzi infection: (1) aP2-RIDα/ß transgenic mice (RID mice; an adipose tissue model which express a gain-of-function potent anti-inflammatory activity), (2) allograft inflammatory factor-1 knockout mice (Aif1-/-), and (3) a Swiss outbred mice. RID mice and non-transgenic mice (wild type, WT) were infected with blood trypomastigotes of Brazil strain. During the acute stage of infection, RID mice had lower parasitemia, lower heart inflammation, and a decrease in the relative distribution of parasite load from cardiac muscle tissue toward epididymal fat. Nevertheless, comparable profiles of myocardial inflammatory infiltrates and relative distribution of parasite load were observed among RID and WT at the chronic stage of infection. Aif1-/- and Aif1+/+ mice were infected with bloodstream trypomastigotes of Tulahuen strain and fed with high-fat diet (HFD) or regular diet (RD). Interestingly, Aif1+/+ HFD infected mice showed the highest mortality. Swiss mice infected with blood trypomastigotes of Berenice-78 strain on a HFD had higher levels of TNFα and more inflammation in their heart tissue than infected mice fed a RD. These various murine models implicate adipocytes in the pathogenesis of chronic Chagas disease and suggest that HFD can lead to a significant increase in the severity of parasite-induced chronic cardiac damage. Furthermore, these data implicate adipocyte TLR4-, TNFα-, and IL-1ß-mediated signaling in pro-inflammatory pathways and Aif-1 gene expression in the development of chronic Chagas disease.


Subject(s)
Chagas Cardiomyopathy/pathology , Chagas Disease/complications , Diet, High-Fat , Trypanosoma cruzi , Animals , Chagas Cardiomyopathy/parasitology , Chagas Disease/parasitology , Chagas Disease/pathology , Disease Models, Animal , Female , Heart/parasitology , Inflammation/parasitology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myocardium/pathology , Parasite Load , Trypanosoma cruzi/physiology , Tumor Necrosis Factor-alpha/metabolism
7.
Eur J Pharm Sci ; 145: 105234, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-31978590

ABSTRACT

Benznidazole (BZ) tablets are a unique form of treatment available for treating Chagas disease. Development of a liquid formulation containing BZ easy to administer orally for the treatment of paediatric patients, particularly for newborns is urgently required, with the same efficacy, safety and suitable biopharmaceutical properties as BZ tablets. Self-emulsifying drug delivery systems (SEDDS) may improve bioavailability of drugs such as BZ, which have poor water solubility and low permeability. In this context, the aim of this work was to develop a liquid BZ-SEDDS formulation as an alternative to tablets and to evaluate its cytotoxicity in different host cell lines and its efficacy in experimental Trypanosoma cruzi infection in mice. The optimized SEDDS formulation (25 mg/ml of BZ) induced no cytotoxicity in H9c2, HepG2 and Caco2 cells in vitro at 25 µM level. BZ-SEDDS and free-BZ showed similar in vitro trypanocidal activity in H9c2 cells infected by T. cruzi Y strain, with IC50 values of 2.10 ± 0.41 µM and 1.29 ± 0.01 µM for BZ and BZ-SEDDS, respectively. A follow up of efficacy in an acute model of infected mice resulted in the same percentage of cure (57%) for both free-BZ and BZ-SEDDS- groups according to established parameters. Furthermore, no additional in vivo toxicity was observed in animals treated with BZ-SEDDS. Taken together, in vitro and in vivo data of BZ-SEDDS showed that the incorporation of BZ into SEDDS does not alter its potency, efficacy and safety. Thus, BZ-SEDDS can be a more practical and personalized orally administered liquid dosage form compared to suspension of crushed BZ-tablets to treat newborn and young children by emulsifying SEDDS in different aqueous liquids with advantage of dosing flexibility.


Subject(s)
Chagas Disease/drug therapy , Drug Delivery Systems/methods , Emulsifying Agents/administration & dosage , Nitroimidazoles/administration & dosage , Trypanocidal Agents/administration & dosage , Animals , Caco-2 Cells , Cell Survival/drug effects , Cell Survival/physiology , Chagas Disease/metabolism , Dosage Forms , Dose-Response Relationship, Drug , Emulsifying Agents/chemistry , Emulsifying Agents/metabolism , Female , Hep G2 Cells , Humans , Mice , Nitroimidazoles/chemistry , Nitroimidazoles/metabolism , Rats , Trypanocidal Agents/chemistry , Trypanocidal Agents/metabolism
8.
Article in English | MEDLINE | ID: mdl-30962342

ABSTRACT

Combination therapy has gained attention as a possible strategy for overcoming the limitations of the present therapeutic arsenal for Chagas disease. The aim of this study was to evaluate the effect of allopurinol in association with nitroheterocyclic compounds on infection with the Y strain of Trypanosoma cruzi The in vitro effect of allopurinol plus benznidazole or nifurtimox on intracellular amastigotes in infected H9c2 cells was assessed in a 72-h assay. The interactions were classified as synergic for both allopurinol-nifurtimox (sums of fractional inhibitory concentrations [∑FICs] = 0.49 ± 0.08) and allopurinol-benznidazole (∑FICs = 0.48 ± 0.09). In the next step, infected Swiss mice were treated with allopurinol at 30, 60, and 90 mg/kg of body weight and with benznidazole at 25, 50, and 75 mg/kg in monotherapy and in combination at the same doses; as a reference treatment, another group of animals received benznidazole at 100 mg/kg. Allopurinol in monotherapy led to a smaller or nil effect in the reduction of parasite load and mortality rate. Treatment with benznidazole at suboptimal doses induced a transient suppression of parasitaemia with subsequent relapse in all animals treated with 25 and 50 mg/kg and in 80% of those that received 75 mg/kg. Administration of the drugs in combination significantly increased the cure rate to 60 to 100% among mice treated with benznidazole at 75 mg/kg plus 30, 60, or 90 mg/kg of allopurinol. These results show a positive interaction between allopurinol and benznidazole, and since both drugs are commercially available, their use in combination may be considered for the assessment in the treatment of Chagas disease patients.


Subject(s)
Allopurinol/therapeutic use , Nifurtimox/therapeutic use , Nitroimidazoles/therapeutic use , Animals , Cell Line , Chagas Disease/parasitology , Humans , Mice , Mortality , Real-Time Polymerase Chain Reaction , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/pathogenicity
9.
Biochem Pharmacol ; 148: 213-221, 2018 02.
Article in English | MEDLINE | ID: mdl-29309767

ABSTRACT

Benznidazole and nifurtimox-treatments regimens currently used in human are supported by very limited experimental data. This study was designed to evaluate the time and dose dependence for efficacy of the most important nitroheterocyclic drugs in use for Chagas disease. In order to evaluate time dependence, Y strain-infected mice received benznidazole for a total of 1, 3, 7, 10, 20, and 40 days. Treatment courses of 3-10-day were effective in clearing parasitaemia and suppressing mortality, but parasitological cure was not achieved. Extending the treatments to 20 or 40 days clearly improved benznidazole efficacy. The 20-day treatment induced cure in 57.1% of Y strain infections (partially drug resistant) but failed to cure Colombian strain infections (full drug resistant), while the 40-day treatment resulted in cure of 100% of Y and 50% of Colombian strain infected mice. The increased cure rates in T. cruzi infected animals that received nifurtimox for 40 days confirm the relationship between the length of treatment and efficacy. An improvement in efficacy was observed with increasing benznidazole doses; cure was verified in 28.6% (75 mg/kg), 57.1% (100 mg/kg) and 80% (300 mg/kg). Overall, these nonclinical study data provide evidence that the efficacy of benznidazole is dose and time dependent. These findings may be relevant for optimizing treatment of human Chagas disease.


Subject(s)
Chagas Disease/drug therapy , Chagas Disease/parasitology , Drug Resistance , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Dose-Response Relationship, Drug , Drug Administration Schedule , Mice , Nifurtimox , Parasitemia , Trypanocidal Agents/administration & dosage
10.
Acta Trop ; 161: 44-54, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27215760

ABSTRACT

Cardiac involvement represents the main cause of mortality among patients with Chagas disease, and the relevance of trypanocidal treatment to improving diastolic dysfunction is still doubtful. In the present study, we used a canine model infected with the benznidazole-sensitive Berenice-78 Trypanosoma cruzi strain to verify the efficacy of an etiologic treatment in reducing the parasite load and ameliorating cardiac muscle tissue damage and left ventricular diastolic dysfunction in the chronic phase of the infection. The effect of the treatment on reducing the parasite load was monitored by blood PCR and blood culture assays, and the effect of the treatment on the outcome of heart tissue damage and on diastolic function was evaluated by histopathology and echo Doppler cardiogram. The benefit of the benznidazole-treatment in reducing the parasite burden was demonstrated by a marked decrease in positive blood culture and PCR assay results until 30days post-treatment. At this time, the PCR and blood culture assays yielded negative results for 82% of the treated animals, compared with only 36% of the untreated dogs. However, a progressive increase in the parasite load could be detected in the peripheral blood for one year post-treatment, as evidenced by a progressive increase in positive results for both the PCR and the blood culture assays at follow-up. The parasite load reduction induced by treatment was compatible with the lower degree of tissue damage among animals euthanized in the first month after treatment and with the increased cardiac damage after this period, reaching levels similar to those in untreated animals at the one-year follow-up. The two infected groups also presented similar, significantly smaller values for early tissue septal velocity (E' SIV) than the non-infected dogs did at this later time. Moreover, in the treated animals, an increase in the E/E' septal tissue filling pressure ratio was observed when compared with basal values as well as with values in non-infected dogs. These findings strongly suggest that the temporary reduction in the parasite load that was induced by benznidazole treatment was not able to prevent myocardial lesions and diastolic dysfunction for long after treatment.


Subject(s)
Chagas Cardiomyopathy/drug therapy , Chagas Cardiomyopathy/parasitology , Heart/parasitology , Myocardium/pathology , Nitroimidazoles/therapeutic use , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Animals , Dogs , Female , Humans , Male , Models, Animal , Nitroimidazoles/pharmacology , Parasite Load , Polymerase Chain Reaction , Trypanosoma cruzi/drug effects
11.
Antimicrob Agents Chemother ; 58(8): 4362-70, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24841257

ABSTRACT

This study was designed to verify the in vivo efficacy of sulfoxide and sulfone fexinidazole metabolites following oral administration in a murine model of Chagas disease. Female Swiss mice infected with the Y strain of Trypanosoma cruzi were treated orally once per day with each metabolite at doses of 10 to 100 mg/kg of body weight for a period of 20 days. Parasitemia was monitored throughout, and cures were detected by parasitological and PCR assays. The results were compared with those achieved with benznidazole treatment at the same doses. Fexinidazole metabolites were effective in reducing the numbers of circulating parasites and protecting mice against death, compared with untreated mice, but without providing cures at daily doses of 10 and 25 mg/kg. Both metabolites were effective in curing mice at 50 mg/kg/day (30% to 40%) and 100 mg/kg/day (100%). In the benznidazole-treated group, parasitological cure was detected only in animals treated with the higher dose of 100 mg/kg/day (80%). Single-dose pharmacokinetic parameters for each metabolite were obtained from a parallel group of uninfected mice and were used to estimate the profiles following repeated doses. Pharmacokinetic data suggested that biological efficacy most likely resides with the sulfone metabolite (or subsequent reactive metabolites formed following reduction of the nitro group) following administration of either the sulfoxide or the sulfone and that prolonged plasma exposure over the 24-h dosing window is required to achieve high cure rates. Fexinidazole metabolites were effective in treating T. cruzi in a mouse model of acute infection, with cure rates superior to those achieved with either fexinidazole itself or benznidazole.


Subject(s)
Chagas Disease/drug therapy , Nitroimidazoles/pharmacology , Sulfones/pharmacology , Sulfoxides/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Administration, Oral , Animals , Biotransformation , Chagas Disease/mortality , Chagas Disease/parasitology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Mice , Nitroimidazoles/pharmacokinetics , Sulfones/metabolism , Sulfoxides/metabolism , Survival Analysis , Trypanocidal Agents/pharmacokinetics , Trypanosoma cruzi/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...