Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Gastroenterology ; 166(3): 483-495, 2024 03.
Article in English | MEDLINE | ID: mdl-38096956

ABSTRACT

BACKGROUND & AIMS: Dysbiosis of the gut microbiota is considered a key contributor to inflammatory bowel disease (IBD) etiology. Here, we investigated potential associations between microbiota composition and the outcomes to biological therapies. METHODS: The study prospectively recruited 296 patients with active IBD (203 with Crohn's disease, 93 with ulcerative colitis) initiating biological therapy. Quantitative microbiome profiles of pretreatment and posttreatment fecal samples were obtained combining flow cytometry with 16S amplicon sequencing. Therapeutic response was assessed by endoscopy, patient-reported outcomes, and changes in fecal calprotectin. The effect of therapy on microbiome variation was evaluated using constrained ordination methods. Prediction of therapy outcome was performed using logistic regression with 5-fold cross-validation. RESULTS: At baseline, 65.9% of patients carried the dysbiotic Bacteroides2 (Bact2) enterotype, with a significantly higher prevalence among patients with ileal involvement (76.8%). Microbiome variation was associated with the choice of biological therapy rather than with therapeutic outcome. Only anti-tumor necrosis factor-α treatment resulted in a microbiome shift away from Bact2, concomitant with an increase in microbial load and butyrogen abundances and a decrease in potentially opportunistic Veillonella. Remission rates for patients hosting Bact2 at baseline were significantly higher with anti-tumor necrosis factor-α than with vedolizumab (65.1% vs 35.2%). A prediction model, based on anthropometrics and clinical data, stool features (microbial load, moisture, and calprotectin), and Bact2 detection predicted treatment outcome with 73.9% accuracy for specific biological therapies. CONCLUSION: Fecal characterization based on microbial load, moisture content, calprotectin concentration, and enterotyping may aid in the therapeutic choice of biological therapy in IBD.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , Humans , Dysbiosis , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/drug therapy , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/drug therapy , Feces , Biological Therapy , Tumor Necrosis Factor-alpha , Leukocyte L1 Antigen Complex , Necrosis
2.
Proc Natl Acad Sci U S A ; 119(44): e2207632119, 2022 11.
Article in English | MEDLINE | ID: mdl-36279461

ABSTRACT

Neural circuits can produce similar activity patterns from vastly different combinations of channel and synaptic conductances. These conductances are tuned for specific activity patterns but might also reflect additional constraints, such as metabolic cost or robustness to perturbations. How do such constraints influence the range of permissible conductances? Here we investigate how metabolic cost affects the parameters of neural circuits with similar activity in a model of the pyloric network of the crab Cancer borealis. We present a machine learning method that can identify a range of network models that generate activity patterns matching experimental data and find that neural circuits can consume largely different amounts of energy despite similar circuit activity. Furthermore, a reduced but still significant range of circuit parameters gives rise to energy-efficient circuits. We then examine the space of parameters of energy-efficient circuits and identify potential tuning strategies for low metabolic cost. Finally, we investigate the interaction between metabolic cost and temperature robustness. We show that metabolic cost can vary across temperatures but that robustness to temperature changes does not necessarily incur an increased metabolic cost. Our analyses show that despite metabolic efficiency and temperature robustness constraining circuit parameters, neural systems can generate functional, efficient, and robust network activity with widely disparate sets of conductances.


Subject(s)
Pylorus , Temperature
3.
Elife ; 112022 05 30.
Article in English | MEDLINE | ID: mdl-35635432

ABSTRACT

Neural systems are remarkably robust against various perturbations, a phenomenon that still requires a clear explanation. Here, we graphically illustrate how neural networks can become robust. We study spiking networks that generate low-dimensional representations, and we show that the neurons' subthreshold voltages are confined to a convex region in a lower-dimensional voltage subspace, which we call a 'bounding box'. Any changes in network parameters (such as number of neurons, dimensionality of inputs, firing thresholds, synaptic weights, or transmission delays) can all be understood as deformations of this bounding box. Using these insights, we show that functionality is preserved as long as perturbations do not destroy the integrity of the bounding box. We suggest that the principles underlying robustness in these networks - low-dimensional representations, heterogeneity of tuning, and precise negative feedback - may be key to understanding the robustness of neural systems at the circuit level.


Subject(s)
Models, Neurological , Neural Networks, Computer , Action Potentials/physiology , Neurons/physiology
4.
PLoS Comput Biol ; 17(7): e1009088, 2021 07.
Article in English | MEDLINE | ID: mdl-34252086

ABSTRACT

During sleep, the brain undergoes dynamic and structural changes. In Drosophila, such changes have been observed in the central complex, a brain area important for sleep control and navigation. The connectivity of the central complex raises the question about how navigation, and specifically the head direction system, can operate in the face of sleep related plasticity. To address this question, we develop a model that integrates sleep homeostasis and head direction. We show that by introducing plasticity, the head direction system can function in a stable way by balancing plasticity in connected circuits that encode sleep pressure. With increasing sleep pressure, the head direction system nevertheless becomes unstable and a sleep phase with a different plasticity mechanism is introduced to reset network connectivity. The proposed integration of sleep homeostasis and head direction circuits captures features of their neural dynamics observed in flies and mice.


Subject(s)
Homeostasis/physiology , Sleep/physiology , Spatial Navigation/physiology , Animals , Brain/physiology , Computational Biology , Drosophila/physiology , Models, Neurological
5.
Nat Commun ; 12(1): 3562, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34117246

ABSTRACT

While metagenomic sequencing has become the tool of preference to study host-associated microbial communities, downstream analyses and clinical interpretation of microbiome data remains challenging due to the sparsity and compositionality of sequence matrices. Here, we evaluate both computational and experimental approaches proposed to mitigate the impact of these outstanding issues. Generating fecal metagenomes drawn from simulated microbial communities, we benchmark the performance of thirteen commonly used analytical approaches in terms of diversity estimation, identification of taxon-taxon associations, and assessment of taxon-metadata correlations under the challenge of varying microbial ecosystem loads. We find quantitative approaches including experimental procedures to incorporate microbial load variation in downstream analyses to perform significantly better than computational strategies designed to mitigate data compositionality and sparsity, not only improving the identification of true positive associations, but also reducing false positive detection. When analyzing simulated scenarios of low microbial load dysbiosis as observed in inflammatory pathologies, quantitative methods correcting for sampling depth show higher precision compared to uncorrected scaling. Overall, our findings advocate for a wider adoption of experimental quantitative approaches in microbiome research, yet also suggest preferred transformations for specific cases where determination of microbial load of samples is not feasible.


Subject(s)
Benchmarking/methods , Computational Biology/methods , Microbiota , Classification , Dysbiosis/microbiology , Electronic Data Processing/methods , Humans , Metagenome , Metagenomics/methods , Selection Bias
6.
Cereb Cortex ; 31(5): 2364-2381, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33300581

ABSTRACT

Sensory cortices must flexibly adapt their operations to internal states and external requirements. Sustained modulation of activity levels in different inhibitory interneuron populations may provide network-level mechanisms for adjustment of sensory cortical processing on behaviorally relevant timescales. However, understanding of the computational roles of inhibitory interneuron modulation has mostly been restricted to effects at short timescales, through the use of phasic optogenetic activation and transient stimuli. Here, we investigated how modulation of inhibitory interneurons affects cortical computation on longer timescales, by using sustained, network-wide optogenetic activation of parvalbumin-positive interneurons (the largest class of cortical inhibitory interneurons) to study modulation of auditory cortical responses to prolonged and naturalistic as well as transient stimuli. We found highly conserved spectral and temporal tuning in auditory cortical neurons, despite a profound reduction in overall network activity. This reduction was predominantly divisive, and consistent across simple, complex, and naturalistic stimuli. A recurrent network model with power-law input-output functions replicated our results. We conclude that modulation of parvalbumin-positive interneurons on timescales typical of sustained neuromodulation may provide a means for robust divisive gain control conserving stimulus representations.


Subject(s)
Auditory Cortex/physiology , Interneurons/physiology , Neurons/metabolism , Animals , Auditory Cortex/metabolism , Optogenetics/methods , Parvalbumins/metabolism , Somatostatin/metabolism
7.
Elife ; 92020 09 17.
Article in English | MEDLINE | ID: mdl-32940606

ABSTRACT

Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators-trained using model simulations-to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features. Our method is scalable in parameters and data features and can rapidly analyze new data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels, and Hodgkin-Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics.


Computational neuroscientists use mathematical models built on observational data to investigate what's happening in the brain. Models can simulate brain activity from the behavior of a single neuron right through to the patterns of collective activity in whole neural networks. Collecting the experimental data is the first step, then the challenge becomes deciding which computer models best represent the data and can explain the underlying causes of how the brain behaves. Researchers usually find the right model for their data through trial and error. This involves tweaking a model's parameters until the model can reproduce the data of interest. But this process is laborious and not systematic. Moreover, with the ever-increasing complexity of both data and computer models in neuroscience, the old-school approach of building models is starting to show its limitations. Now, Gonçalves, Lueckmann, Deistler et al. have designed an algorithm that makes it easier for researchers to fit mathematical models to experimental data. First, the algorithm trains an artificial neural network to predict which models are compatible with simulated data. After initial training, the method can rapidly be applied to either raw experimental data or selected data features. The algorithm then returns the models that generate the best match. This newly developed machine learning tool was able to automatically identify models which can replicate the observed data from a diverse set of neuroscience problems. Importantly, further experiments showed that this new approach can be scaled up to complex mechanisms, such as how a neural network in crabs maintains its rhythm of activity. This tool could be applied to a wide range of computational investigations in neuroscience and other fields of biology, which may help bridge the gap between 'data-driven' and 'theory-driven' approaches.


Subject(s)
Machine Learning , Neural Networks, Computer , Neurons/physiology , Algorithms , Animals , Bayes Theorem , Mice , Rats
8.
Article in English | MEDLINE | ID: mdl-24616666

ABSTRACT

Many neural systems can store short-term information in persistently firing neurons. Such persistent activity is believed to be maintained by recurrent feedback among neurons. This hypothesis has been fleshed out in detail for the oculomotor integrator (OI) for which the so-called "line attractor" network model can explain a large set of observations. Here we show that there is a plethora of such models, distinguished by the relative strength of recurrent excitation and inhibition. In each model, the firing rates of the neurons relax toward the persistent activity states. The dynamics of relaxation can be quite different, however, and depend on the levels of recurrent excitation and inhibition. To identify the correct model, we directly measure these relaxation dynamics by performing optogenetic perturbations in the OI of zebrafish expressing halorhodopsin or channelrhodopsin. We show that instantaneous, inhibitory stimulations of the OI lead to persistent, centripetal eye position changes ipsilateral to the stimulation. Excitatory stimulations similarly cause centripetal eye position changes, yet only contralateral to the stimulation. These results show that the dynamics of the OI are organized around a central attractor state-the null position of the eyes-which stabilizes the system against random perturbations. Our results pose new constraints on the circuit connectivity of the system and provide new insights into the mechanisms underlying persistent activity.


Subject(s)
Eye Movements/physiology , Neurons/physiology , Oculomotor Nerve/physiology , Animals , Animals, Genetically Modified , Models, Neurological , Optogenetics , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...