Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Regen Res ; 18(8): 1645-1651, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36751774

ABSTRACT

Alzheimer's disease is a severe, highly disabling neurodegenerative disease, clinically characterized by a progressive decline in cognitive functions, and is the most common form of dementia in the elderly. For decades, the search for disease-modifying therapies has focused on the two main Alzheimer's disease histopathological hallmarks, seeking to prevent, mitigate, or clear the formation of extracellular aggregates of ß-amyloid peptide and intracellular neurofibrillary tangles of tau protein, although without clinical success. Mesenchymal stem cell-based therapy has emerged as a promising alternative for the treatment of Alzheimer's disease, especially because it also targets other crucial players in the pathogenesis of the disease, such as neuroinflammation, synaptic dysfunction/loss, oxidative stress, and impaired neurogenesis. Herein, we review current knowledge of the therapeutic potential of mesenchymal stem cells and their extracellular vesicles for Alzheimer's disease, discussing the most recent findings in both preclinical and clinical trials as well as how advanced technologies have helped to overcome some limitations and contributed to stimulate the development of more effective treatments.

2.
Int J Dev Neurosci ; 81(3): 249-258, 2021 May.
Article in English | MEDLINE | ID: mdl-33544920

ABSTRACT

Monocular eye enucleation (ME) is a classical paradigm to induce neural plasticity in retinal ganglion cells (RGCs) axons from the intact eye, especially when performed within the critical period of visual system development. However, the precise mechanisms underlying the axonal sprouting and synaptogenesis seen in this model remain poorly understood. In the present work, we investigated the temporal alterations in phosphorylation of three kinases related to axonal growth and synaptogenesis-GSK3ß (an important repressor of axonal outgrowth), AKT, and ERK-in superior colliculus of rats submitted to ME during early postnatal development. Western blotting analysis showed an increase in pGSK3ß, the inactive form of this enzyme, 24 and 48 hr after ME. Accordingly, an increase in pERK levels was detected 24 hr after ME, indicating that phosphorylation of these enzymes might be related to axonal reorganization induced by ME. Interestingly, AKT phosphorylation was increased just 1 week after ME, suggesting it may be involved in the stabilization of newly formed synapses, rising from the axonal reorganization of remaining eye. A better understanding of how signaling pathways are modulated in a model of intense axonal sprouting can highlight possible therapeutic targets in RGCs injuries in adult individuals, where axonal regrowth is nearly absent.


Subject(s)
Eye Enucleation , Neuronal Plasticity/physiology , Signal Transduction/physiology , Superior Colliculi/metabolism , Animals , Female , Glycogen Synthase Kinase 3 beta/metabolism , Male , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats
3.
Int J Dev Neurosci ; 60: 16-25, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28323038

ABSTRACT

Amyloid precursor protein (APP) is essential to physiological processes such as synapse formation and neural plasticity. Sequential proteolysis of APP by beta- and gamma-secretases generates amyloid-beta peptide (Aß), the main component of senile plaques in Alzheimer Disease. Alternative APP cleavage by alpha-secretase occurs within Aß domain, releasing soluble α-APP (sAPPα), a neurotrophic fragment. Among other functions, sAPPα is important to synaptogenesis, neural survival and axonal growth. APP and sAPPα levels are increased in models of neuroplasticity, which suggests an important role for APP and its metabolites, especially sAPPα, in the rearranging brain. In this work we analyzed the effects of monocular enucleation (ME), a classical model of lesion-induced plasticity, upon APP content, processing and also in secretases levels. Besides, we addressed whether α-secretase activity is crucial for retinotectal remodeling after ME. Our results showed that ME induced a transient reduction in total APP content. We also detected an increase in α-secretase expression and in sAPP production concomitant with a reduction in Aß and ß-secretase contents. These data suggest that ME facilitates APP processing by the non-amyloidogenic pathway, increasing sAPPα levels. Indeed, the pharmacological inhibition of α-secretase activity reduced the axonal sprouting of ipsilateral retinocollicular projections from the intact eye after ME, suggesting that sAPPα is necessary for synaptic structural rearrangement. Understanding how APP processing is regulated under lesion conditions may provide new insights into APP physiological role on neural plasticity.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Eye Enucleation , Neuronal Plasticity/physiology , Vision, Monocular/physiology , Visual Cortex/physiology , Visual Pathways/physiology , Animals , Denervation , Rats , Visual Cortex/surgery , Visual Pathways/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...