Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 10: 1035449, 2022.
Article in English | MEDLINE | ID: mdl-36465861

ABSTRACT

Light-based therapies and diagnoses including photodynamic therapy (PDT) have been used in many fields of medicine, including the treatment of non-oncological diseases and many types of cancer. PDT require a light source and a light-sensitive compound, called photosensitizer (PS), to detect and destroy cancer cells. After absorption of the photon, PS molecule gets excited from its singlet ground state to a higher electronically excited state which, among several photophysical processes, can emit light (fluorescence) and/or generate reactive oxygen species (ROS). Moreover, the biological responses are activated only in specific areas of the tissue that have been submitted to exposure to light. The success of the PDT depends on many parameters, such as deep light penetration on tissue, higher PS uptake by undesired cells as well as its photophysical and photochemical characteristics. One of the challenges of PDT is the depth of penetration of light into biological tissues. Because photon absorption and scattering occur simultaneously, these processes depend directly on the light wavelength. Using PS that absorbs photons on "optical transparency windows" of biological tissues promises deeper penetration and less attenuation during the irradiation process. The traditional PS normally is excited by a higher energy photon (UV-Vis light) which has become the Achilles' heel in photodiagnosis and phototreatment of deep-seated tumors below the skin. Thus, the need to have an effective upconverter sensitizer agent is the property in which it absorbs light in the near-infrared (NIR) region and emits in the visible and NIR spectral regions. The red emission can contribute to the therapy and the green and NIR emission to obtain the image, for example. The absorption of NIR light by the material is very interesting because it allows greater penetration depth for in vivo bioimaging and can efficiently suppress autofluorescence and light scattering. Consequently, the penetration of NIR radiation is greater, activating the biophotoluminescent material within the cell. Thus, materials containing Rare Earth (RE) elements have a great advantage for these applications due to their attractive optical and physicochemical properties, such as several possibilities of excitation wavelengths - from UV to NIR, strong photoluminescence emissions, relatively long luminescence decay lifetimes (µs to ms), and high sensitivity and easy preparation. In resume, the relentless search for new systems continues. The contribution and understanding of the mechanisms of the various physicochemical properties presented by this system is critical to finding a suitable system for cancer treatment via PDT.

2.
Dalton Trans ; 51(46): 17869-17882, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36354376

ABSTRACT

We have evaluated the structural and luminescence properties of Eu3+- or Nd3+-doped lanthanum niobate systems synthesized via a sol-gel route and containing different dopant contents. XRD analysis revealed that the orthorhombic La3NbO7 and monoclinic LaNbO4 crystalline phases were present in all the samples, regardless of the dopant concentration. The excitation spectra of the samples displayed a broad band due to Nb5+→O2- charge transfer; this band was quite sensitive to the increasing Eu3+ content. The photoluminescence emission spectra of the samples with a lower Eu3+ content showed that Eu3+ occupied both crystalline phases. However, when the Eu3+ content increased, these ions preferentially occupied the C2 symmetry sites in the LaNbO4 host lattice. There was no emission quenching for the Eu3+-doped samples with a Eu3+ content as high as 20 mol%. The emission spectra of the Nd3+-doped samples displayed an intense emission band in the NIR-II biological window under NIR-I excitation, at 808 nm. In the case of the samples with a lower Nd3+ content, Nd3+ occupied distinct symmetry sites in La3NbO7. In contrast, in the samples with a higher Nd3+ content, these ions preferentially occupied LaNbO4 sites. The Nd3+ concentration that quenched emission in the Nd3+-doped samples was about 2.6 mol%, due to Nd3+-Nd3+ cross-relaxation processes. On the basis of these findings, the Eu3+-doped samples explored herein have promising applications in the lighting field, whereas the Nd3+-doped samples have potential use as solid-state lasers and biomarkers.


Subject(s)
Europium , Lanthanum , Europium/chemistry , Lanthanum/chemistry , Luminescence , Lighting
3.
ACS Omega ; 6(13): 8784-8796, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33842750

ABSTRACT

This paper reports on the news about refractive index measurements and spectroscopic features of thin films, which can be applied as optical planar waveguides, focusing on their manufacturing processes, designs, and possible applications as optical amplifiers and sensors. Er3+-doped SiO2-Ta2O5 planar waveguides, with Si/Ta ratios of 90:10, 80:20, 70:30, 60:40, and 50:50, were prepared by a soft sol-gel process. Multilayer films were deposited by the dip-coating technique onto 10 µm SiO2-Si (100) p-type silicon and Si (100) silicon easily and successfully. The mechanisms of the densification process, porosity, and hydroxy group or water molecule occurrence have been accompanied by m-line and vibrational spectroscopy analyses. The thickness and refractive index values were used to understand better the influence of temperature and annealing time on the densification of the bulk films and the reduction of the pore volume as the tantalum oxide concentration increases. The refractive index shows the density of the films, and by the atomic force microscopy (AFM) technique, the films showed low surface roughness, achieving relatively high light confinement within the waveguide structure, and negligible optical loss due to surface scattering. Nanoparticle crystallization of Ta2O5 with size distribution ranging from 2.0 to 15.0 nm embedded in SiO2 was observed with size depending on annealing time and tantalum concentration. Intense and broadband emission positioned at 1550 nm, which is attributed to the 4I13/2 → 4I15/2 transition of Er3+ ions, was observed for all planar waveguides under excitation at 271, 272, and 278 nm. Depending on the porosity degree, the adsorption of H2O molecules occurs, changing the refractive index and contributing to the deactivation of excited states of Er3+ ions, making them an optical platform for use as an optical sensor for different species. Besides, the densified waveguides containing 20 or 30 mol % Ta exhibit high potential for applications as broadband optical amplifiers for wavelength division multiplexing (WDM), optical sensing, or augmented reality.

5.
Molecules ; 24(9)2019 Apr 27.
Article in English | MEDLINE | ID: mdl-31035579

ABSTRACT

This work describes the direct coupling of the in-tube solid-phase microextraction (in-tube SPME) technique to a tandem mass spectrometry system (MS/MS) to determine amino acids (AA) and neurotransmitters (NT) (alanine, serine, isoleucine, leucine, aspartic acid, glutamic acid, lysine, methionine, tyrosine, and tryptophan) in plasma samples from schizophrenic patients. An innovative organic-silica hybrid monolithic capillary with bifunctional groups (amino and cyano) was developed and evaluated as an extraction device for in-tube SPME. The morphological and structural aspects of the monolithic phase were evaluated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), nitrogen sorption experiments, X-ray diffraction (XRD) analyses, and adsorption experiments. In-tube SPME-MS/MS conditions were established to remove matrix, enrich analytes (monolithic capillary) and improve the sensitivity of the MS/MS system. The proposed method was linear from 45 to 360 ng mL-1 for alanine, from 15 to 300 ng mL-1 for leucine and isoleucine, from 12 to 102 ng mL-1 for methionine, from 10 to 102 ng mL-1 for tyrosine, from 9 to 96 ng mL-1 for tryptophan, from 12 to 210 ng mL-1 for serine, from 12 to 90 ng mL-1 for glutamic acid, from 12 to 102 ng mL-1 for lysine, and from 6 to 36 ng mL-1 for aspartic acid. The precision of intra-assays and inter-assays presented CV values ranged from 1.6% to 14.0%. The accuracy of intra-assays and inter-assays presented RSE values from -11.0% to 13.8%, with the exception of the lower limit of quantification (LLOQ) values. The in-tube SPME-MS/MS method was successfully applied to determine the target AA and NT in plasma samples from schizophrenic patients.


Subject(s)
Amino Acids/analysis , Amino Acids/isolation & purification , Biosensing Techniques , Chromatography, High Pressure Liquid , Lansoprazole , Ligands , Silica Gel , Solid Phase Microextraction , Adsorption , Amino Acids/blood , Chromatography, High Pressure Liquid/methods , Humans , Lansoprazole/chemistry , Silica Gel/chemical synthesis , Silica Gel/chemistry , Solid Phase Microextraction/methods , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
6.
J Mater Sci Mater Med ; 27(4): 71, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26886819

ABSTRACT

Graphene oxide (GO) has attracted remarkable attention in recent years due to properties such as extremely large surface area, biocompatibility, biostability, and easy chemical functionalization. Osteoblasts underlie the deposition of hydroxyapatite crystals in the bone protein matrix during biomineralization; hydroxyapatite deposition involves extracellular matrix vesicles that are rich in alkaline phosphatase (ALP). Here, we have investigated how GO affects osteoblast viability, ALP activity, and mineralized matrix formation in osteoblast cultures in three different phases of cell growth, in the presence and in the absence of titanium (Ti). Scanning electron microscopy (SEM), Raman spectra, and energy dispersive spectroscopy aided GO characterization. The presence of GO increased the viability of osteoblast cells grown on a plastic surface. However, osteoblast viability on Ti discs was lower in the presence than in the absence of GO. ALP activity emerged at 14 days for the cell culture incubated with GO. The total protein concentration also increased at 21 days on both the Ti discs and plastic surface. Osteoblasts grown on Ti discs had increased mineralized matrix formation in the presence of GO as compared to the cells grown in the absence of GO. SEM images of the cell cultures on plastic surfaces in the presence of GO suggested delayed mineralized matrix formation. In conclusion, applications requiring the presence of Ti, such as prostheses and implants, should benefit from the use of GO, which may increase mineralized nodule formation, stimulate biomineralization, and accelerate bone regeneration.


Subject(s)
Biocompatible Materials , Graphite/chemistry , Osteoblasts/physiology , Titanium/chemistry , Animals , Cell Survival , Microscopy, Electron, Scanning , Plastics , Rats , Rats, Wistar , Surface Properties
7.
J Mater Sci Mater Med ; 27(3): 62, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26800693

ABSTRACT

The use of carbon nanotubes (CNTs) on the development of biomaterials has been motivated by their excellent mechanical properties that could improve synthetic bone materials. However, the toxicity of CNTs on the tissue/implant interface and their influence on the biomineralization process have some contradictions. We investigated the influence of CNTs on osteoblasts plated on titanium (Ti) discs or plastic surfaces. We evaluated osteoblasts viability, alkaline phosphatase (ALP) activity, and mineralized matrix formation in the different phases of osteoblasts growth in the presence of single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs). An increase in osteoblasts viability was observed at the 21st day for both CNTs on plastic surface, while viability increased for MWCNTs at the 7th and 14th days and at the 7th day for SWCNTs on Ti discs compared to control. ALP activity increased at the 14th and 21st days for MWCNTs on plastic surfaces. For cells incubated with SWCNTs, an increase in ALP activity at the 7th day for plastic surface and at the 14th day for both materials (plastic and Ti) was observed. The mineralized matrix formation increased at the 21st day on plastic surface with SWCNTs, and at the 14th and 21st days for both CNTs on Ti discs. In conclusion, both SWCNTs and MWCNTs are not toxic to osteoblasts at concentrations up to 5 × 10(-5) and 1.3 × 10(-2) mg/mL, respectively, either in Ti discs or plastic surfaces. In the long term, the cells grown in contact with both CNTs and Ti presented better results regarding bone-like nodules formation.


Subject(s)
Nanotubes, Carbon , Osteoblasts/physiology , Tissue Scaffolds , Animals , Bone Marrow Cells , Cell Survival , Cells, Cultured , Male , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Osteogenesis , Rats , Rats, Wistar
8.
Dalton Trans ; 44(8): 3829-36, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25608498

ABSTRACT

This work proposes a simple and inexpensive method to prepare a new series of ß-diketonate-tantalum complexes. The method is based on the use of a [TaF7](2-) solution, as the tantalum precursor, thenoyltrifluoroacetone (TTA), hexafluoroacetylacetone (HFA), and benzoyltrifluoroacetylacetone (BFA) in basic medium; basic pH is achieved by adding urea to the reaction medium. Elemental analysis, H(1)-NMR spectroscopy, potentiometric measurements conducted with a fluorine-selective electrode, conductivity measurements, vibrational spectroscopy based on quantum chemistry calculations, and electronic spectroscopy helped in determining the molecular structure of the complexes. At room temperature in the solid state and in solution upon irradiation with UV light, the complexes exhibited blue emission, probably as a result of the heavy atom effect. On the basis of the structures, luminescence properties at room temperature, and solvent-dependent changes in the electronic properties of the complexes, these ß-diketonates are potentially applicable as optical ethanol or humidity sensors and are promising materials for the development of luminescent devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...