Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Language
Publication year range
1.
Sensors (Basel) ; 23(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37420696

ABSTRACT

The inspection and maintenance of transmission systems are necessary for their proper functioning. In this way, among the line's critical points are the insulator chains, which are responsible for providing insulation between conductors and structures. The accumulation of pollutants on the insulator surface can cause failures in the power system, leading to power supply interruptions. Currently, the cleaning of insulator chains is performed manually by operators who climb towers and use cloths, high-pressure washers, or even helicopters. The use of robots and drones is also under study, presenting challenges to be overcome. This paper presents the development of a drone-robot for cleaning insulator chains. The drone-robot was designed to identify insulators by camera and perform cleaning through a robotic module. This module is attached to the drone and carries a battery-powered portable washer, a reservoir for demineralized water, a depth camera, and an electronic control system. This paper includes a literature review on the state of the art related to strategies used for cleaning insulator chains. Based on this review, the justification for the construction of the proposed system is presented. The methodology used in the development of the drone-robot is then described. The system was validated in a controlled environment and in field experimental tests, with the ensuing discussions and conclusions formulated, along with suggestions for future work.


Subject(s)
Robotics , Unmanned Aerial Devices , Aircraft , Electric Power Supplies , Electronics
3.
Front Robot AI ; 9: 739088, 2022.
Article in English | MEDLINE | ID: mdl-35252362

ABSTRACT

Cable-driven robots can be an ideal fit for performing post-stroke rehabilitation due to their specific features. For example, they have small and lightweight moving parts and a relatively large workspace. They also allow safe human-robot interactions and can be easily adapted to different patients and training protocols. However, the existing cable-driven robots are mostly unilateral devices that can allow only the rehabilitation of the most affected limb. This leaves unaddressed the rehabilitation of bimanual activities, which are predominant within the common Activities of Daily Living (ADL). Serious games can be integrated with cable-driven robots to further enhance their features by providing an interactive experience and by generating a high level of engagement in patients, while they can turn monotonous and repetitive therapy exercises into entertainment tasks. Additionally, serious game interfaces can collect detailed quantitative treatment information such as exercise time, velocities, and force, which can be very useful to monitor a patient's progress and adjust the treatment protocols. Given the above-mentioned strong advantages of both cable driven robots, bimanual rehabilitation and serious games, this paper proposes and discusses a combination of them, in particular, for performing bilateral/bimanual rehabilitation tasks. The main design characteristics are analyzed for implementing the design of both the hardware and software components. The hardware design consists of a specifically developed cable-driven robot. The software design consists of a specifically developed serious game for performing bimanual rehabilitation exercises. The developed software also includes BiEval. This specific software allows to quantitatively measure and assess the rehabilitation therapy effects. An experimental validation is reported with 15 healthy subjects and a RCT (Randomized Controlled Trial) has been performed with 10 post-stroke patients at the Physiotherapy's Clinic of the Federal University of Uberlândia (Minas Gerais, Brazil). The RCT results demonstrate the engineering feasibility and effectiveness of the proposed cable-driven robot in combination with the proposed BiEval software as a valuable tool to augment the conventional physiotherapy protocols and for providing reliable measurements of the patient's rehabilitation performance and progress. The clinical trial was approved by the Research Ethics Committee of the UFU (Brazil) under the CAAE N° 00914818.5.0000.5152 on plataformabrasil@saude.gov.br.

4.
J Neuroeng Rehabil ; 14(1): 88, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28877750

ABSTRACT

BACKGROUND: To provide body weight support during walking and balance training, one can employ two distinct embodiments: support through a harness hanging from an overhead system or support through a saddle/seat type. This paper presents a comparison of these two approaches. Ultimately, this comparison determined our selection of the body weight support system employed in the MIT-Skywalker, a robotic device developed for the rehabilitation/habilitation of gait and balance after a neurological injury. METHOD: Here we will summarize our results with eight healthy subjects walking on the treadmill without any support, with 30% unloading supported by a harness hanging from an overhead system, and with a saddle/seat-like support system. We compared the center of mass as well as vertical and mediolateral trunk displacements across different walking speeds and support. RESULTS: The bicycle/saddle system had the highest values for the mediolateral inclination, while the overhead harness body weight support showed the lowest values at all speeds. The differences were statistically significant. CONCLUSION: We selected the bicycle/saddle system for the MIT-Skywalker. It allows faster don-and-doff, better centers the patient to the split treadmill, and allows all forms of training. The overhead harness body weight support might be adequate for rhythmic walking training but limits any potential for balance training.


Subject(s)
Gait Disorders, Neurologic/rehabilitation , Orthotic Devices , Robotics/instrumentation , Robotics/methods , Adult , Bicycling , Biomechanical Phenomena , Body Weight , Female , Gait Disorders, Neurologic/etiology , Healthy Volunteers , Humans , Male , Nervous System Diseases/complications , Nervous System Diseases/rehabilitation , Software , Walking , Walking Speed
5.
Biosci. j. (Online) ; 32(6): 1689-1702, nov./dec. 2016. ilus, tab
Article in English | LILACS | ID: biblio-965838

ABSTRACT

In engineering designed systems it is commonly considered that mathematical models, variables, and parameters are sufficiently reliable, i.e., there are no errors in modeling and estimation. However, the systems to be optimized can be sensitive to small changes in the designed variables causing significant changes in the objective function. Robust optimization is an approach for modeling optimization problems under uncertainty in which the modeler aims to find decisions that are optimal for the worst-case realization of the uncertainties within a given set of values. In this contribution, a self-adaptive heuristic optimization method, namely the Self-Adaptive Differential Evolution (SADE), is evaluated. Differently from the canonical Differential Evolution algorithm (DE), the SADE strategy is able to update the required parameters such as population size, crossover parameter, and perturbation rate, dynamically. This is done by considering a defined convergence rate on the evolution process of the algorithm in order to reduce the number of evaluations of the objective function. For illustration purposes, the SADE strategy is associated with the Mean Effective Concept (MEC) for insertion robustness, is applied to minimize forces applied in cables used for the rehabilitation of the human lower limbs by determining the positioning of motors. The results show that the methodology that was proposed (SADE+MEC) appears as an interesting strategy for the treatment of robust optimization problems.


No projeto de sistemas de engenharia é comum considerar que os modelos, as variáveis e os parâmetros são confiáveis, isto é, não apresentam erros de modelagem e de estimação. Entretanto, os sistemas a serem otimizados podem ser sensíveis a pequenas alterações nas variáveis de projeto causando significativas modificações no vetor de objetivos. Otimização robusta é uma abordagem para modelagem de problemas de otimização sob incerteza em que o modelador tem como objetivo encontrar decisões que são ideais para o pior caso de realização das incertezas dentro de um determinado conjunto de valores. Neste trabalho, um método de otimização heurística auto-adaptável, nomeada Self-Adaptive Differential Evolution (SADE), é avaliada. Diferentemente do algoritmo de Evolução Diferencial, a estratégia SADE é capaz de atualizar os parâmetros necessários, tais como o tamanho da população, o parâmetro de passagem e taxa de perturbação, de forma dinâmica. Isto é feito considerando uma taxa de convergência definido no processo de evolução do algoritmo, a fim de reduzir o número de avaliações da função objetivo. Para fins de ilustração, a estratégia SADE associado ao conceito de média efetiva, para inserção da robustez, é aplicada para minimizar as forças aplicadas nos cabos da estrutura robótica utilizada para a reabilitação dos membros inferiores humanos, determinando o posicionamento dos atuadores. Os resultados mostram que o método proposto neste trabalho configura-se como uma estratégia interessante para o tratamento de problemas de otimização robustos.


Subject(s)
Rehabilitation , Robotics , Lower Extremity
6.
IEEE Int Conf Rehabil Robot ; 2011: 5975503, 2011.
Article in English | MEDLINE | ID: mdl-22275699

ABSTRACT

In this paper a cable-based system is presented for rehabilitation of the shoulder and elbow movements. Cable-based manipulators have very good kinematic and dynamic characteristics, and they also show other properties such as: transportability and low-cost construction, which make them also suitable for medical applications and rehabilitation. The general robotics structure consists of four cables that allow the movement of vertical flexion-extension, abduction-adduction and horizontal flexion-extension with different limits of movement and speed of the shoulder. The structure can also perform the elbow movements of the flexion-extension. The development of this robotic device is justified by the large number of people with upper limb problems. These problems are due of stroke, polio, arthritis, recovery after accidents or trauma and can be applied to movements of physical therapy. The kinematics model of cable-based parallel robots is obtained similarly to the model obtained from traditional parallel structures. The graphical simulations of the cable-based parallel structure for rehabilitation of the movements of the human arm are presented showing the viability of the proposed structure. Finally preliminary experimental tests are presented.


Subject(s)
Elbow Joint/physiology , Movement/physiology , Robotics/instrumentation , Robotics/methods , Shoulder/physiology , Stroke Rehabilitation , Biomechanical Phenomena , Humans , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL