Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Phys Med Rehabil ; 101(11): 1056-1065, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35034058

ABSTRACT

ABSTRACT: Obesity affects 600 million people globally and increases the risk of developing cardiovascular disease, stroke, diabetes, and cancer. Bariatric surgery is an increasingly popular therapeutic intervention for morbid obesity to induce rapid weight loss and reduce obesity-related comorbidities. However, some bariatric surgery patients, after what is considered a successful surgical procedure, continue to manifest obesity-related health issues, including weight gain, reduced physical function, persistent elevations in blood pressure, and reduced cardiorespiratory fitness. Cardiorespiratory fitness is a strong predictor of mortality and several health outcomes and could be improved by an appropriate exercise prescription after bariatric surgery. This review provides a broad overview of exercise training for patients after bariatric surgery and discusses cardiorespiratory fitness and other potential physiological adaptations in response to exercise training.


Subject(s)
Bariatric Surgery , Cardiorespiratory Fitness , Obesity, Morbid , Humans , Cardiorespiratory Fitness/physiology , Bariatric Surgery/methods , Obesity, Morbid/surgery , Exercise , Exercise Therapy/methods , Physical Fitness/physiology
2.
Front Rehabil Sci ; 2: 744102, 2021.
Article in English | MEDLINE | ID: mdl-36188788

ABSTRACT

Interstitial lung diseases (ILDs) comprise a heterogeneous group of disorders (such as idiopathic pulmonary fibrosis, sarcoidosis, asbestosis, and pneumonitis) characterized by lung parenchymal impairment, inflammation, and fibrosis. The shortness of breath (i.e., dyspnea) is a hallmark and disabling symptom of ILDs. Patients with ILDs may also exhibit skeletal muscle dysfunction, oxygen desaturation, abnormal respiratory patterns, pulmonary hypertension, and decreased cardiac function, contributing to exercise intolerance and limitation of day-to-day activities. Pulmonary rehabilitation (PR) including physical exercise is an evidence-based approach to benefit functional capacity, dyspnea, and quality of life in ILD patients. However, despite recent advances and similarities with other lung diseases, the field of PR for patients with ILD requires further evidence. This mini-review aims to explore the exercise-based PR delivered around the world and evidence supporting prescription modes, considering type, intensity, and frequency components, as well as efficacy and safety of exercise training in ILDs. This review will be able to strengthen the rationale for exercise training recommendations as a core component of the PR for ILD patients.

3.
Respir Med ; 173: 106173, 2020 11.
Article in English | MEDLINE | ID: mdl-33007709

ABSTRACT

AIM: Evaluate the acute effects of non-invasive positive pressure ventilation (NiPPV) during high-intensity exercise on endothelial function in patients with coexisting chronic obstructive pulmonary disease (COPD) and heart failure (HF). METHODS: This is a randomized, double blinded, sham-controlled study involving 14 COPD-HF patients, who underwent a lung function test and Doppler echocardiography. On two different days, patients performed incremental cardiopulmonary exercise testing (CPET) and two constant-work rate tests (80% of CPET peak) receiving Sham or NiPPV (bilevel mode - Astral 150) in a random order until the limit of tolerance (Tlim). Endothelial function was evaluated by flow mediated vasodilation (FMD) at three time points: 1) Baseline; 2) immediately post-exercise with NiPPV; and 3) immediately post-exercise with Sham. RESULTS: Our patients had a mean age of 70 ± 7 years, FEV1 1.9 ± 0.7 L and LVEF 41 ± 9%. NIPPV resulted in an increased Tlim (NiPPV: 130 ± 29s vs Sham: 98 ± 29s p = 0.015) and SpO2 (NiPPV: 94.7 ± 3.5% vs Sham: 92.7 ± 5.2% p = 0.03). Also, NiPPV was able to produce a significant increase in FMD (%) (NiPPV: 9.2 ± 3.1 vs Sham: 3.6 ± 0.7, p < 0.05), FMD (mm) (NiPPV: 0.41 ± 0.18 vs Sham: 0.20 ± 0.11, p < 0.05), Blood flow velocity (NiPPV: 33 ± 18 vs Baseline: 20 ± 14, p < 0.05) and Shear Stress (SS) (NiPPV: 72 ± 38 vs Baseline: 43 ± 25, p < 0.05). We found correlation between Tlim vs. ΔSS (p = 0.03; r = 0.57). Univariate-regression analysis revealed that increased SS influenced 32% of Tlim during exercise with NiPPV. CONCLUSION: NiPPV applied during high-intensity exercise can acutely modulate endothelial function and improve exercise tolerance in COPD-HF patients. In addition, the increase of SS positively influences exercise tolerance.


Subject(s)
Blood Flow Velocity , Endothelium, Vascular/physiopathology , Exercise Tolerance , Heart Failure/physiopathology , Heart Failure/therapy , High-Intensity Interval Training/methods , Noninvasive Ventilation/methods , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/therapy , Aged , Double-Blind Method , Female , Heart Failure/complications , Humans , Male , Pulmonary Disease, Chronic Obstructive/complications , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...