Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Saudi J Biol Sci ; 29(4): 2756-2765, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35531202

ABSTRACT

Spent mushroom Substrate is the by-product generated at the end of the mushroom growing cycle. It can be used in agriculture for different purposes, including seedling production, soil conditioning or application as an organic fertilizer. Tomato is one of the world́s most important crops, requiring considerable care, in terms of both nutrition and disease control. The objective of this study was to investigate the viability of spent mushroom substrate as a nutrient source for tomato seedlings and develop an integrated tomato and mushroom co-production system. For seedling production, different compositions were evaluated with spent mushroom substrate from Pleurotus ostreatus or substrate colonized with Agaricus bisporus. The parameters evaluated comprised germination rate, seedling quality and physicochemical analysis. A tomato and mushroom integrated production system was developed using a 40-liter pot divided into upper (spent mushroom substrate and soil), middle (spent mushroom substrate from P. ostreatus) and lower (gravel) layers. For seedlings production, plants treated with the substrate colonized with A. bisporus presented a superior root length (10.1 cm) and aerial part length (6.6 cm). Co-production of tomato and mushrooms was also shown to be viable. In this co-cultivation system between tomato and mushroom, the treatment with the substrate colonized with A. bisporus differed from others, with this treatment presenting high yields of tomato (2.35 kg/plant pot) and mushrooms (1.33 kg/plant pot) within the same bucket. With this co-production system, the tomato production time was reduced by 60 days and prolonged continuous mushroom production by 120 days. These findings show a sustainable approach to manage different agroindustrial residues, encouraging the use of these residues for olericulture and fungiculture production.

2.
Food Chem ; 374: 131740, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-34879324

ABSTRACT

Agaricus subrufescens has emerged as an important culinary-medicinal mushroom over the last decades. Efforts have been dedicated to upgrade the A. subrufescens productive process via strain selection and cultivation scaling-up. However, little is known on the influence of those variables on the metabolite profiles and nutraceutical properties of this mushroom. In this work, the effects of outdoor versus indoor cultivation on the metabolite profiles of five commercial strains of A. subrufescens were investigated by untargeted metabolomics. UHPLC-MS coupled to multivariate data analysis revealed that the concentration of several metabolites with reported health-related properties as well as related to taste and browning varied significantly between strains and were affected by the cultivation system in a strain-dependent manner. Data suggest that increasing the production scale by means of indoor cultivation may decrease the nutraceutical quality of some A. subrufescens strains while also affecting taste and browning susceptibility to different extents.


Subject(s)
Agaricus , Nutritive Value , Agaricus/growth & development , Agriculture/methods , Metabolomics
3.
Curr Microbiol ; 63(6): 581-7, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21964940

ABSTRACT

The natural biodiversity that is found in tropical areas offers countless biotechnological opportunities; especially if we take in account that many biomolecules from several microorganisms have supported for many years, different industrial applications in areas such as pharmacology, agro-industry, bioprocess, environmental technology, and bioconversion. In order to find new lignocellulolytic enzymes and evaluate bamboo fibers as substrate, Schizophyllum commune a fungus with broad distribution was isolated and grown during 15 days in liquid culture medium containing 1% lignocellulosic fibers from bamboo, banana stem, and sugarcane bagasse. The enzymatic activity of xylanase, mannanase, polygalacturonase, CMCase, FPase, and avicelase were evaluated. Sugarcane bagasse and banana stem showed to induce higher hollocellulase activity when compared with bamboo as the main carbon source. The physical mechanism that the fungus uses to degrade bamboo was observed not only in fibers naturally infected but also in healthy fibers that were treated and untreated with enzyme solution. SEM analysis showed the structural disruption and invasion of the vascular bundles, parenchyma cells, and parenchymatous tissues as a consequence of the presence of this fungus and the catalytic action of its enzymes into the plant tissue.


Subject(s)
Bambusa/microbiology , Cellulase/metabolism , Schizophyllum/enzymology , Bambusa/ultrastructure , Carbohydrates/analysis , Cellulase/analysis , Microscopy, Electron, Scanning , Schizophyllum/growth & development
4.
Sci. agric. ; 66(6)2009.
Article in English | VETINDEX | ID: vti-440434

ABSTRACT

Commercial productivity of the Agaricus blazei mushroom is closely related to both the quality of the compost and the choice of soil to be used as a casing material. This study aims to evaluate Agaricus blazei's productivity using two compost formulations and three soils. The two compost formulations were (i) crushed sugarcane bagasse (Saccharum officinarum (L.)) and Coastcross hay (Cynidon dactylon (L.) Pers.), and (ii) crushed sugarcane bagasse (Saccharum officinarum (L.)) and corn husk (Zea mays L.); they were amended with wheat bran, lime, gypsum, superphosphate and urea. The casing materials were extracted from three soils classed as Rhodic Hapludox, Xanthic Hapludox, and Humic Haplaquox. The Rhodic Hapludox soil material was mixed with fragments of Eucalyptus charcoal in the proportion of 4:1. The compost was prepared during six weeks and thereafter heat treated during 48 h at the end of the composting period. The sugarcane bagasse:coast-hay compost was superior to the sugarcane bagasse: corn husk compost. The Rhodic Hapludox plus charcoal casing material showed to be a better casing material than either the Xanthic Hapludox and Humic Haplaquox soil materials. The choice of the soils where the casing material is taken is an important factor to the success of the Agaricus blazei mushroom cultivation.


A produtividade do cogumelo Agaricus blazei depende da qualidade do composto e da terra de cobertura. Avaliou-se a produtividade deste cogumelo utilizando-se duas formulações de composto e materiais retirados de três tipos de solo usados como camada de cobertura. As duas formulações de composto consistiram em (i) bagaço de cana-de-açúcar (Saccharum officinarum (L.)) e capim Coastcross (Cynidon dactylon (L.) Pers.), e (ii) bagaço de cana-de-açúcar (Saccharum officinarum (L.)) e palha de milho (Zea mays L.). As duas formulações foram suplementadas com farelo de trigo, calcário, gesso, superfosfato simples e uréia. Como camadas de cobertura foram usadas materiais retirados de um Latossolo Vermelho distroférrico (LVdf), um Latossolo Amarelo distrófico (LAdi) e um Gleissolo melânico (GSm). O material retirado do LVdf foi misturado com carvão vegetal na proporção de 4:1. O composto foi preparado durante seis semanas e pasteurizado com vapor d'água por 48 h ao final do processo de compostagem. O composto bagaço de cana:capim Coastcross foi superior ao composto bagaço de cana: palha de milho, enquanto que o material retirado do LVdf e misturado com carvão vegetal foi melhor como camada de cobertura, em comparação ao LAdi e GSm. A escolha do solo onde será retirado o material a ser utilizado como camada de cobertura pode ser fator determinante no sucesso do cultivo do cogumelo Agaricus blazei.

5.
Sci. agric ; 66(6)2009.
Article in English | LILACS-Express | VETINDEX | ID: biblio-1497029

ABSTRACT

Commercial productivity of the Agaricus blazei mushroom is closely related to both the quality of the compost and the choice of soil to be used as a casing material. This study aims to evaluate Agaricus blazei's productivity using two compost formulations and three soils. The two compost formulations were (i) crushed sugarcane bagasse (Saccharum officinarum (L.)) and Coastcross hay (Cynidon dactylon (L.) Pers.), and (ii) crushed sugarcane bagasse (Saccharum officinarum (L.)) and corn husk (Zea mays L.); they were amended with wheat bran, lime, gypsum, superphosphate and urea. The casing materials were extracted from three soils classed as Rhodic Hapludox, Xanthic Hapludox, and Humic Haplaquox. The Rhodic Hapludox soil material was mixed with fragments of Eucalyptus charcoal in the proportion of 4:1. The compost was prepared during six weeks and thereafter heat treated during 48 h at the end of the composting period. The sugarcane bagasse:coast-hay compost was superior to the sugarcane bagasse: corn husk compost. The Rhodic Hapludox plus charcoal casing material showed to be a better casing material than either the Xanthic Hapludox and Humic Haplaquox soil materials. The choice of the soils where the casing material is taken is an important factor to the success of the Agaricus blazei mushroom cultivation.


A produtividade do cogumelo Agaricus blazei depende da qualidade do composto e da terra de cobertura. Avaliou-se a produtividade deste cogumelo utilizando-se duas formulações de composto e materiais retirados de três tipos de solo usados como camada de cobertura. As duas formulações de composto consistiram em (i) bagaço de cana-de-açúcar (Saccharum officinarum (L.)) e capim Coastcross (Cynidon dactylon (L.) Pers.), e (ii) bagaço de cana-de-açúcar (Saccharum officinarum (L.)) e palha de milho (Zea mays L.). As duas formulações foram suplementadas com farelo de trigo, calcário, gesso, superfosfato simples e uréia. Como camadas de cobertura foram usadas materiais retirados de um Latossolo Vermelho distroférrico (LVdf), um Latossolo Amarelo distrófico (LAdi) e um Gleissolo melânico (GSm). O material retirado do LVdf foi misturado com carvão vegetal na proporção de 4:1. O composto foi preparado durante seis semanas e pasteurizado com vapor d'água por 48 h ao final do processo de compostagem. O composto bagaço de cana:capim Coastcross foi superior ao composto bagaço de cana: palha de milho, enquanto que o material retirado do LVdf e misturado com carvão vegetal foi melhor como camada de cobertura, em comparação ao LAdi e GSm. A escolha do solo onde será retirado o material a ser utilizado como camada de cobertura pode ser fator determinante no sucesso do cultivo do cogumelo Agaricus blazei.

SELECTION OF CITATIONS
SEARCH DETAIL