Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Bioeng Biomech ; 23(2): 139-145, 2021.
Article in English | MEDLINE | ID: mdl-34846047

ABSTRACT

PURPOSE: Falls are one of the main causes of injuries in older adults. This study evaluated a low-cost footswitch device that was designed to measure gait variability and investigates whether there are any relationships between variability metrics and clinical balance tests for individuals with a history of previous falls. METHODS: Sixteen older adults completed a history of falls questionnaire, three functional tests related to fall risk, and walked on a treadmill with the footswitch device. We extracted the stride times from the device and applied two nonlinear variability analyses: coefficient of variation and detrended fluctuation analysis. RESULTS: The temporal variables and variability metrics from the footswitch device correlated with gold-standard measurements based on ground reaction force data. One variability metric (detrended fluctuation analysis) showed a significant relationship with the presence of past falls with a sensitivity of 43%. CONCLUSION: This feasibility study demonstrates the basis for using low-cost footswitch devices to predict fall risk.


Subject(s)
Accidental Falls , Gait , Aged , Exercise Test , Feasibility Studies , Humans , Postural Balance , Walking
2.
Biomechanics (Basel) ; 1(1): 118-130, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34414390

ABSTRACT

Margin of stability (MOS) is considered a measure of mechanical gait stability. Due to broad application of treadmills in gait assessment experiments, we aimed to determine if walking on a treadmill vs. overground would affect MOS during three speed-matched conditions. Eight healthy young participants walked on a treadmill and overground at Slow, Preferred, and Fast speed-matched conditions. The mean and variability (standard deviation) of the MOS in anterior-posterior and mediolateral directions at heel contact were calculated. Anterior-posterior and mediolateral mean MOS values decreased with increased speed for both overground and treadmill; although mediolateral mean MOS was always wider on the treadmill compared to overground. Due to lack of optic flow and different proprioceptive inputs during treadmill walking, subjects may employ strategies to increase their lateral stability on treadmill compared to overground. Anterior-posterior MOS variability increased with speed overground, while it did not change on treadmill, which might be due to the fixed speed of treadmill. Whereas, lateral variability on both treadmill and overground was U-shaped. Walking at preferred speed was less variable (may be interpreted as more stable) laterally, compared to fast and slow speeds. Caution should be given when interpreting MOS between modes and speeds of walking. As sagittal plane walking is functionally unstable, this raises the consideration as to the meaningfulness of using MOS as a global measure of gait stability in this direction.

3.
IEEE Trans Neural Syst Rehabil Eng ; 28(6): 1353-1362, 2020 06.
Article in English | MEDLINE | ID: mdl-32340953

ABSTRACT

Walking can be simplified as an inverted pendulum motion where both legs generate linear impulses to redirect the center of mass (COM) into every step. In this work, we describe a system to assist walking in a simpler way than exoskeletons by providing linear impulses directly at the COM instead of providing torques at the joints. We developed a novel waist end-effector and high-level controller for an existing cable-robot. The controller allows for the application of cyclic horizontal force profiles with desired magnitudes, timings, and durations based on detection of the step timing. By selecting a lightweight rubber series elastic element with optimal stiffness and carefully tuning the gains of the closed-loop proportional-integral-derivative (PID) controller in a number of single-subject experiments, we were able to reduce the within-step root mean square error between desired and actual forces up to 1.21% of body weight. This level of error is similar or lower compared to the performance of other robotic tethers designed to provide variable or constant forces at the COM. The system can produce force profiles with peaks of up to 15 ± 2% of body weight within a root mean square error (RMSE) of 2.5% body weight. This system could be used to assist patient populations that require levels of assistance that are greater than current exoskeletons and in a way that does not make the user rely on vertical support.


Subject(s)
Exoskeleton Device , Robotic Surgical Procedures , Robotics , Biomechanical Phenomena , Humans , Walking
4.
R Soc Open Sci ; 7(2): 191527, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32257319

ABSTRACT

Walking on different grades becomes challenging on energetic and muscular levels compared to level walking. While it is not possible to eliminate the cost of raising or lowering the centre of mass (COM), it could be possible to minimize the cost of distal joints with shoes that offset downhill or uphill grades. We investigated the effects of shoe outsole geometry in 10 participants walking at 1 m s-1 on downhill, level and uphill grades. Level shoes minimized metabolic rate during level walking (P second-order effect < 0.001). However, shoes that entirely offset the (overall) treadmill grade did not minimize the metabolic rate of walking on grades: shoes with a +3° (upward) inclination minimized metabolic rate during downhill walking on a -6° grade, and shoes with a -3° (downward) inclination minimized metabolic rate during uphill walking on a +6° grade (P interaction effect = 0.023). Shoe inclination influenced (distal) ankle joint parameters, including soleus muscle activity, ankle moment and work rate, whereas treadmill grade influenced (whole-body) ground reaction force and COM work rate as well as (distal) ankle joint parameters including tibialis anterior and plantarflexor muscle activity, ankle moment and work rate. Similar modular footwear could be used to minimize joint loads or assist with walking on rolling terrain.

SELECTION OF CITATIONS
SEARCH DETAIL
...