Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Infect Dis ; 24(1): 520, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783244

ABSTRACT

BACKGROUND: On 20 September 2022, Uganda declared its fifth Sudan virus disease (SVD) outbreak, culminating in 142 confirmed and 22 probable cases. The reproductive rate (R) of this outbreak was 1.25. We described persons who were exposed to the virus, became infected, and they led to the infection of an unusually high number of cases during the outbreak. METHODS: In this descriptive cross-sectional study, we defined a super-spreader person (SSP) as any person with real-time polymerase chain reaction (RT-PCR) confirmed SVD linked to the infection of ≥ 13 other persons (10-fold the outbreak R). We reviewed illness narratives for SSPs collected through interviews. Whole-genome sequencing was used to support epidemiologic linkages between cases. RESULTS: Two SSPs (Patient A, a 33-year-old male, and Patient B, a 26-year-old male) were identified, and linked to the infection of one probable and 50 confirmed secondary cases. Both SSPs lived in the same parish and were likely infected by a single ill healthcare worker in early October while receiving healthcare. Both sought treatment at multiple health facilities, but neither was ever isolated at an Ebola Treatment Unit (ETU). In total, 18 secondary cases (17 confirmed, one probable), including three deaths (17%), were linked to Patient A; 33 secondary cases (all confirmed), including 14 (42%) deaths, were linked to Patient B. Secondary cases linked to Patient A included family members, neighbours, and contacts at health facilities, including healthcare workers. Those linked to Patient B included healthcare workers, friends, and family members who interacted with him throughout his illness, prayed over him while he was nearing death, or exhumed his body. Intensive community engagement and awareness-building were initiated based on narratives collected about patients A and B; 49 (96%) of the secondary cases were isolated in an ETU, a median of three days after onset. Only nine tertiary cases were linked to the 51 secondary cases. Sequencing suggested plausible direct transmission from the SSPs to 37 of 39 secondary cases with sequence data. CONCLUSION: Extended time in the community while ill, social interactions, cross-district travel for treatment, and religious practices contributed to SVD super-spreading. Intensive community engagement and awareness may have reduced the number of tertiary infections. Intensive follow-up of contacts of case-patients may help reduce the impact of super-spreading events.


Subject(s)
Disease Outbreaks , Humans , Uganda/epidemiology , Male , Cross-Sectional Studies , Adult , Female , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/virology , Whole Genome Sequencing , Ebolavirus/genetics , Ebolavirus/isolation & purification
2.
Int J Infect Dis ; 145: 107073, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38670481

ABSTRACT

OBJECTIVES: Early isolation and care for Ebola disease patients at Ebola Treatment Units (ETU) curb outbreak spread. We evaluated time to ETU entry and associated factors during the 2022 Sudan virus disease (SVD) outbreak in Uganda. METHODS: We included persons with RT-PCR-confirmed SVD with onset September 20-November 30, 2022. We categorized days from symptom onset to ETU entry ("delays") as short (≤2), moderate (3-5), and long (≥6); the latter two were "delayed isolation." We categorized symptom onset timing as "earlier" or "later," using October 15 as a cut-off. We assessed demographics, symptom onset timing, and awareness of contact status as predictors for delayed isolation. We explored reasons for early vs late isolation using key informant interviews. RESULTS: Among 118 case-patients, 25 (21%) had short, 43 (36%) moderate, and 50 (43%) long delays. Seventy-five (64%) had symptom onset later in the outbreak. Earlier symptom onset increased risk of delayed isolation (crude risk ratio = 1.8, 95% confidence interval (1.2-2.8]). Awareness of contact status and SVD symptoms, and belief that early treatment-seeking was lifesaving facilitated early care-seeking. Patients with long delays reported fear of ETUs and lack of transport as contributors. CONCLUSION: Delayed isolation was common early in the outbreak. Strong contact tracing and community engagement could expedite presentation to ETUs.


Subject(s)
Disease Outbreaks , Hemorrhagic Fever, Ebola , Humans , Uganda/epidemiology , Male , Female , Adult , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/therapy , Middle Aged , Young Adult , Time-to-Treatment , Adolescent , Sudan/epidemiology , Time Factors , Patient Isolation
3.
Acta Trop ; 240: 106841, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36693517

ABSTRACT

Anthrax, caused by Bacillus anthracis, is a widespread zoonotic disease with many human cases, especially in developing countries. Even with its global distribution, anthrax is a neglected disease with scarce information about its actual impact on the community level. Due to the ecological dynamics of anthrax transmission at the wildlife-livestock interface, the Sub-Saharan Africa region becomes a high-risk zone for maintaining and acquiring the disease. In this regard, some subregions of Uganda are endemic to anthrax with regular seasonal trends. However, there is scarce data about anthrax outbreaks in Uganda. Here, we confirmed the presence of B. anthracis in several livestock samples after a suspected anthrax outbreak among livestock and humans in Arua District. Additionally, we explored the potential risk factors of anthrax through a survey within the community kraals. We provide evidence that the most affected livestock species during the Arua outbreak were cattle (86%) compared to the rest of the livestock species present in the area. Moreover, the farmers' education level and the presence of people's anthrax cases were the most critical factors determining the disease's knowledge and awareness. Consequently, the lack of understanding of the ecology of anthrax may contribute to the spread of the infection between livestock and humans, and it is critical to reducing the presence and persistence of the B. anthracis spores in the environment. Finally, we discuss the increasingly recognized necessity to strengthen global capacity using a One Health approach to prevent, detect, control, and respond to public threats in Uganda.


Subject(s)
Anthrax , Bacillus anthracis , Animals , Humans , Cattle , Anthrax/epidemiology , Anthrax/veterinary , Livestock , Uganda/epidemiology , Animals, Wild , Disease Outbreaks
SELECTION OF CITATIONS
SEARCH DETAIL
...