Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry (Mosc) ; 88(12): 2125-2136, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38462455

ABSTRACT

Expression of LOX-1 and NOX1 genes in the human umbilical vein endotheliocytes (HUVECs) cultured in the presence of low-density lipoproteins (LDL) modified with various natural dicarbonyls was investigated for the first time. It was found that among the investigated dicarbonyl-modified LDLs (malondialdehyde (MDA)-modified LDLs, glyoxal-modified LDLs, and methylglyoxal-modified LDLs), the MDA-modified LDLs caused the greatest induction of the LOX-1 and NOX1 genes, as well as of the genes of antioxidant enzymes and genes of proapoptotic factors in HUVECs. Key role of the dicarbonyl-modified LDLs in the molecular mechanisms of vascular wall damage and endothelial dysfunction is discussed.


Subject(s)
Endothelial Cells , Lipoproteins, LDL , Humans , Lipoproteins, LDL/metabolism , Umbilical Veins/metabolism , Endothelial Cells/metabolism , Scavenger Receptors, Class E/genetics , Scavenger Receptors, Class E/metabolism , Gene Expression , Cells, Cultured , NADPH Oxidase 1/genetics , NADPH Oxidase 1/metabolism
2.
Int J Mol Sci ; 23(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36499590

ABSTRACT

Peroxiredoxin 6 (Prdx6) is a multifunctional eukaryotic antioxidant enzyme. Mammalian Prdx6 possesses peroxidase activity against a wide range of organic and inorganic hydroperoxides, as well as exhibits phospholipase A2 (aiPLA2) activity, which plays an important role in the reduction of oxidized phospholipids and cell membrane remodeling. Exogenous Prdx6 has recently been shown to be able to penetrate inside the cell. We hypothesized that this entry may be due to the phospholipase activity of Prdx6. Experiments using exogenous Prdx6 in three cell lines (3T3, A549, RAW 264.7) demonstrated that it is the phospholipase activity that promotes its penetration into the cell. Overoxidation of Prdx6 led to a suppression of the peroxidase activity and a 3-to-4-fold growth of aiPLA2, which enhanced the efficiency of its transmembrane transport into the cells by up to 15 times. A mutant form of Prdx6-S32A with an inactivated phospholipase center turned out to be unable to enter the cells in both the reduced and oxidized state of the peroxidase active center. Previously, we have shown that exogenous Prdx6 has a significant radioprotective action. However, the role of phospholipase activity in the radioprotective effects of Prdx6 remained unstudied. Trials with the mutant Prdx6-S32A form, with the use of a total irradiation model in mice, showed a nearly 50% reduction of the radioprotective effect upon aiPLA2 loss. Such a significant decrease in the radioprotective action may be due to the inability of Prdx6-S32A to penetrate animal cells, which prevents its reduction by the natural intracellular reducing agent glutathione S-transferase (πGST) and lowers the efficiency of elimination of peroxides formed from the effect of ionizing radiation. Thus, phospholipase activity may play an important role in the reduction of oxidized Prdx6 and manifestation of its antioxidant properties.


Subject(s)
Peroxidase , Peroxiredoxin VI , Mice , Animals , Peroxiredoxin VI/genetics , Peroxiredoxin VI/metabolism , Peroxidase/metabolism , Phospholipases A2/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Peroxidases , Mammals/metabolism
3.
Biochemistry (Mosc) ; 87(8): 839-849, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36171649

ABSTRACT

Peroxiredoxin 6 (Prdx6) is an important antioxidant enzyme with multiple functions in the cell. Prdx6 neutralizes a wide range of hydroperoxides, participates in phospholipid metabolism and cell membrane repair, and in transmission of intracellular and intercellular signals. Disruption of normal Prdx6 expression in the cell leads to the development of pathological conditions. Decrease in the Prdx6 concentration leads to increase in oxidative damage to the cell. At the same time, hyperproduction of Prdx6 is associated with increase in antioxidant status, suppression of apoptosis, and carcinogenesis. Currently, mechanisms of carcinogenic action of peroxiredoxins are poorly understood. In this work we established that the 3-4-fold increase in Prdx6 production in mouse embryonic fibroblast 3T3 cells leads to the 4-5-fold decrease in the level of oncosuppressor p53. At the same time, hyperproduction of Prdx6 leads to the increased expression of RELA and HIF1A, which have oncogenic effects. The 3-4-fold increase in intracellular Prdx6 increases intensity of cell proliferation by 20-30%, promotes increase in antioxidant activity by 30-50%, and increases radioresistance of the transfected 3T3 cells by 30-40%. Increase of the level of intranuclear Prdx6 leads to the decrease in expression of the DNA repair genes in response to radiation, indicating decrease in the genomic DNA damage. This work discusses possible molecular mechanisms of p53 suppression during Prdx6 hyperproduction, which could be used in the development of new approaches in cancer therapy.


Subject(s)
Antioxidants , Peroxiredoxin VI , Tumor Suppressor Protein p53 , Animals , Antioxidants/metabolism , Fibroblasts/metabolism , Mice , Oxidative Stress , Peroxiredoxin VI/genetics , Peroxiredoxin VI/metabolism , Peroxiredoxins/metabolism , Phospholipids , Transcription Factors/metabolism , Tumor Suppressor Protein p53/metabolism
4.
Antioxidants (Basel) ; 10(12)2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34943054

ABSTRACT

Although many different classes of antioxidants have been evaluated as radioprotectors, none of them are in widespread clinical use because of their low efficiency. The goal of our study was to evaluate the potential of the antioxidant protein peroxiredoxin 6 (Prdx6) to increase the radioresistance of 3T3 fibroblasts when Prdx6 was applied after exposure to 6 Gy X-ray. In the present study, we analyzed the mRNA expression profiles of genes associated with proliferation, apoptosis, cellular stress, senescence, and the production of corresponding proteins from biological samples after exposure of 3T3 cells to X-ray radiation and application of Prdx6. Our results suggested that Prdx6 treatment normalized p53 and NF-κB/p65 expression, p21 levels, DNA repair-associated genes (XRCC4, XRCC5, H2AX, Apex1), TLR expression, cytokine production (TNF-α and IL-6), and apoptosis, as evidenced by decreased caspase 3 level in irradiated 3T3 cells. In addition, Prdx6 treatment reduced senescence, as evidenced by the decreased percentage of SA-ß-Gal positive cells in cultured 3T3 fibroblasts. Importantly, the activity of the NRF2 gene, an important regulator of the antioxidant cellular machinery, was completely suppressed by irradiation but was restored by post-irradiation Prdx6 treatment. These data support the radioprotective therapeutic efficacy of Prdx6.

5.
Antioxidants (Basel) ; 9(8)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751232

ABSTRACT

The pathogenesis of ischemia-reperfusion (I/R) injuries is based on oxidative stress caused by a sharp increase in the concentration of free radicals, reactive oxygen species (ROS) and secondary products of free radical oxidation of biological macromolecules during reperfusion. Application of exogenous antioxidants lowers the level of ROS in the affected tissues, suppresses or adjusts the course of oxidative stress, thereby substantially reducing the severity of I/R injury. We believe that the use of antioxidant enzymes may be the most promising line of effort since they possess higher efficiency than low molecular weight antioxidants. Among antioxidant enzymes, of great interest are peroxiredoxins (Prx1-6) which reduce a wide range of organic and inorganic peroxide substrates. In an animal model of bilateral I/R injury of kidneys (using histological, biochemical, and molecular biological methods) it was shown that intravenous administration of recombinant typical 2-Cys peroxiredoxins (Prx1 and Prx2) effectively reduces the severity of I/R damage, contributing to the normalization of the structural and functional state of the kidneys and an almost 2-fold increase in the survival of experimental animals. The use of recombinant Prx1 or Prx2 can be an efficient approach for the prevention and treatment of renal I/R injury.

SELECTION OF CITATIONS
SEARCH DETAIL
...