Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Nat Prod ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995621

ABSTRACT

Merkel cell carcinoma (MCC) is a rare and aggressive cutaneous cancer. Two new prenylated indole 2,5-diketopiperazine alkaloids, brevianamides E1 (1) and E2 (2), were isolated from a Penicillium fungus. Both compounds showed moderate cytotoxic activity against select MCC cell lines (i.e., MCC13, MKL-1, UISO, and WaGa) in the low micromolar range. The relative and absolute configurations of 1 and 2 were determined by combined approaches, including NOESY spectroscopy, DFT ECD and DP4 plus calculations, and Marfey's reaction. Literature research and the comparison of NMR and ECD data led to the structure revision of three previously reported natural analogues, notoamides K and P and asperversiamide L. The structurally unstable 1 and 2 underwent steady interconversion under neutral aqueous conditions. Investigation of the degradation of 2 in acidic methanol solutions led to the identification of a new methoxylated derivative (6) and two new ring-opened products (7 and 8) with the rearranged, elongated, 4-methylpent-3-ene side chain. The facile transformation of 2 to 7 and 8 was promoted by the intrinsic impurity (i.e., formaldehyde) of HPLC-grade methanol through the aza-Cope rearrangement.

2.
J Nat Prod ; 86(10): 2283-2293, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37843072

ABSTRACT

The DNAJB1-PRKACA oncogenic gene fusion results in an active kinase enzyme, J-PKAcα, that has been identified as an attractive antitumor target for fibrolamellar hepatocellular carcinoma (FLHCC). A high-throughput assay was used to identify inhibitors of J-PKAcα catalytic activity by screening the NCI Program for Natural Product Discovery (NPNPD) prefractionated natural product library. Purification of the active agent from a single fraction of an Aplidium sp. marine tunicate led to the discovery of two unprecedented alkaloids, aplithianines A (1) and B (2). Aplithianine A (1) showed potent inhibition against J-PKAcα with an IC50 of ∼1 µM in the primary screening assay. In kinome screening, 1 inhibited wild-type PKA with an IC50 of 84 nM. Further mechanistic studies including cocrystallization and X-ray diffraction experiments revealed that 1 inhibited PKAcα catalytic activity by competitively binding to the ATP pocket. Human kinome profiling of 1 against a panel of 370 kinases revealed potent inhibition of select serine/threonine kinases in the CLK and PKG families with IC50 values in the range ∼11-90 nM. An efficient, four-step total synthesis of 1 has been accomplished, enabling further evaluation of aplithianines as biologically relevant kinase inhibitors.


Subject(s)
Biological Products , Carcinoma, Hepatocellular , Humans , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases , Carcinoma, Hepatocellular/pathology , Serine , HSP40 Heat-Shock Proteins/chemistry , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism
3.
Life (Basel) ; 13(10)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37895467

ABSTRACT

An emergence of evidence suggests that severe COVID-19 is associated with an increased risk of developing breast and gastrointestinal cancers. The aim of this research was to assess the risk of heart tumors development in patients who have had COVID-19. METHODS: A comparative analysis of 173 heart tumors was conducted between 2016 and 2023. Immunohistochemical examination with antibodies against spike SARS-CoV-2 was performed on 21 heart tumors: 10 myxomas operated before 2020 (the control group), four cardiac myxomas, one proliferating myxoma, three papillary fibroelastomas, two myxofibrosarcomas, one chondrosarcoma resected in 2022-2023. Immunohistochemical analysis with antibodies against CD34 and CD68 was also conducted on the same 11 Post-COVID period heart tumors. Immunofluorescent examination with a cocktail of antibodies against spike SARS-CoV-2/CD34 and spike SARS-CoV-2/CD68 was performed in 2 cases out of 11 (proliferating myxoma and classic myxoma). RESULTS: A 1.5-fold increase in the number of heart tumors by 2023 was observed, with a statistically significant increase in the number of myxomas. There was no correlation with vaccination, and no significant differences were found between patients from 2016-2019 and 2021-2023 in terms of gender, age, and cardiac rhythm dis-orders. Morphological examination revealed the expression of spike SARS-CoV-2 in tumor cells, endothelial cells, and macrophages in 10 out of 11 heart tumors. CONCLUSION: The detection of SARS-CoV-2 persistence in endothelium and macrophages as well as in tumor cells of benign and malignant cardiac neoplasms, the increase in the number of these tumors, especially cardiac myxomas, after the pandemic by 2023 may indicate a trend toward an increased risk of cardiac neoplasms in COVID-19 patients, which re-quires further research on this issue and a search for new evidence.

4.
Molecules ; 28(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37570703

ABSTRACT

Six new sesquiterpene coumarin ethers, namely turcicanol A (1), turcicanol A acetate (2), turcicanol B (3), turcica ketone (4), 11'-dehydrokaratavicinol (5), and galbanaldehyde (6), and one new sulfur-containing compound, namely turcicasulphide (7), along with thirty-two known secondary metabolites were isolated from the root of the endemic species Ferula turcica Akalin, Miski, & Tuncay through a bioassay-guided isolation approach. The structures of the new compounds were elucidated by spectroscopic analysis and comparison with the literature. Cell growth inhibition of colon cancer cell lines (COLO205 and HCT116) and kidney cancer cell lines (UO31 and A498) was used to guide isolation. Seventeen of the compounds showed significant activity against the cell lines.


Subject(s)
Anesthetics, General , Antineoplastic Agents, Phytogenic , Antineoplastic Agents , Ferula , Sesquiterpenes , Ferula/chemistry , Sulfur Compounds/analysis , Molecular Structure , Ethers , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents/analysis , Coumarins/chemistry , Sesquiterpenes/chemistry , Sulfur/analysis , Plant Roots/chemistry
5.
ACS Pharmacol Transl Sci ; 6(4): 633-650, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37082750

ABSTRACT

The recent demonstration that adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) plays an oncogenic role in a number of important cancers has led to a renaissance in drug development interest targeting this kinase. We therefore have established a suite of biochemical, cell-based, and structural biology assays for identifying and evaluating new pharmacophores for PKA inhibition. This discovery process started with a 384-well high-throughput screen of more than 200,000 substances, including fractionated natural product extracts. Identified active compounds were further prioritized in biochemical, biophysical, and cell-based assays. Priority lead compounds were assessed in detail to fully characterize several previously unrecognized PKA pharmacophores including the generation of new X-ray crystallography structures demonstrating unique interactions between PKA and bound inhibitor molecules.

6.
Org Lett ; 24(51): 9468-9472, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36516994

ABSTRACT

A new dimeric alkaloid plakoramine A [(±)-1] was identified from a marine sponge Plakortis sp. Chiral-phase HPLC separation of (±)-1 led to the purified enantiomers (+)-1 and (-)-1 which both potently inhibited CBL-B E3 ubiquitin ligase activities. The absolute configurations of the enantiomers were determined by quantum chemical calculations. Scrutinization of the purification conditions revealed a previously undescribed, nonenzymatic route to form (±)-1 via photochemical conversion of its naturally occurring monomeric counterpart, plakinidine B (2).


Subject(s)
Dimerization
7.
Sci Rep ; 11(1): 13597, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193920

ABSTRACT

Merkel cell carcinoma (MCC) is a rare, but aggressive skin cancer the incidence of which has increased significantly in recent years. The majority of MCCs have incorporated Merkel cell polyomavirus (VP-MCC) while the remainder are virus-negative (VN-MCC). Although a variety of therapeutic options have shown promise in treating MCC, there remains a need for additional therapeutics as well as probes for better understanding MCC. A high-throughput screening campaign was used to assess the ability of > 25,000 synthetic and natural product compounds as well as > 20,000 natural product extracts to affect growth and survival of VN-MCC and VP-MCC cell lines. Sixteen active compounds were identified that have mechanisms of action reported in the literature along with a number of compounds with unknown mechanisms. Screening results with pure compounds suggest a range of potential targets for MCC including DNA damage, inhibition of DNA or protein synthesis, reactive oxygen species, and proteasome inhibition as well as NFκB inhibition while also suggesting the importance of zinc and/or copper binding. Many of the active compounds, particularly some of the natural products, have multiple reported targets suggesting that this strategy might be a particularly fruitful approach. Processing of several active natural product extracts resulted in the identification of additional MCC-active compounds. Based on these results, further investigations focused on natural products sources, particularly of fungal origin, are expected to yield further potentially useful modulators of MCC.


Subject(s)
Antineoplastic Agents , Biological Products , Carcinoma, Merkel Cell , Skin Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Carcinoma, Merkel Cell/drug therapy , Carcinoma, Merkel Cell/metabolism , Carcinoma, Merkel Cell/pathology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
8.
Mar Drugs ; 19(7)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202500

ABSTRACT

An extract of the coralline demosponge Astrosclera willeyana inhibited the ubiquitin ligase activity of the immunomodulatory protein Cbl-b. The bioassay-guided separation of the extract provided ten active compounds, including three new N-methyladenine-containing diterpenoids, agelasines W-Y (1-3), a new bromopyrrole alkaloid, N(1)-methylisoageliferin (4), and six known ageliferin derivatives (5-10). The structures of the new compounds were elucidated from their spectroscopic and spectrometric data, including IR, HRESIMS, and NMR, and by comparison with spectroscopic data in the literature. While all of the isolated compounds showed Cbl-b inhibitory activities, ageliferins (4-10) were the most potent metabolites, with IC50 values that ranged from 18 to 35 µM.


Subject(s)
Diterpenes/pharmacology , Imidazoles/metabolism , Porifera , Pyrroles/metabolism , Animals , Aquatic Organisms , Diterpenes/chemistry , Humans , Molecular Structure , Phytotherapy , Tonga
9.
Mol Cancer Ther ; 20(9): 1743-1754, 2021 09.
Article in English | MEDLINE | ID: mdl-34158349

ABSTRACT

Activating mutations in RAS are found in approximately 30% of human cancers, resulting in the delivery of a persistent signal to critical downstream effectors that drive tumorigenesis. RAS-driven malignancies respond poorly to conventional cancer treatments and inhibitors that target RAS directly are limited; therefore, the identification of new strategies and/or drugs to disrupt RAS signaling in tumor cells remains a pressing therapeutic need. Taking advantage of the live-cell bioluminescence resonance energy transfer (BRET) methodology, we describe the development of a NanoBRET screening platform to identify compounds that modulate binding between activated KRAS and the CRAF kinase, an essential effector of RAS that initiates ERK cascade signaling. Using this strategy, libraries containing synthetic compounds, targeted inhibitors, purified natural products, and natural product extracts were evaluated. These efforts resulted in the identification of compounds that inhibit RAS/RAF binding and in turn suppress RAS-driven ERK activation, but also compounds that have the deleterious effect of enhancing the interaction to upregulate pathway signaling. Among the inhibitor hits identified, the majority were compounds derived from natural products, including ones reported to alter KRAS nanoclustering (ophiobolin A), to impact RAF function (HSP90 inhibitors and ROS inducers) as well as some with unknown targets and activities. These findings demonstrate the potential for this screening platform in natural product drug discovery and in the development of new therapeutic agents to target dysregulated RAS signaling in human disease states such as cancer.


Subject(s)
Bioluminescence Resonance Energy Transfer Techniques/methods , Fibroblasts/drug effects , High-Throughput Screening Assays/methods , Protein Interaction Domains and Motifs/drug effects , Proto-Oncogene Proteins c-raf/antagonists & inhibitors , ras Proteins/agonists , ras Proteins/antagonists & inhibitors , Animals , Fibroblasts/metabolism , Humans , Ligands , Nanotechnology/methods , Proto-Oncogene Proteins c-raf/chemistry , Proto-Oncogene Proteins c-raf/metabolism , ras Proteins/metabolism
10.
Cells ; 10(3)2021 03 20.
Article in English | MEDLINE | ID: mdl-33804755

ABSTRACT

Plants have historically been a rich source of successful anticancer drugs and chemotherapeutic agents, with research indicating that this trend will continue. In this contribution, we performed high-throughput cytotoxicity screening of 702 extracts from 95 plant species, representing 40 families of the Brazilian Cerrado biome. Activity was investigated against the following cancer cell lines: colon (Colo205 and Km12), renal (A498 and U031), liver (HEP3B and SKHEP), and osteosarcoma (MG63 and MG63.3). Dose-response tests were conducted with 44 of the most active extracts, with 22 demonstrating IC50 values ranging from <1.3 to 20 µg/mL. A molecular networking strategy was formulated using the Global Natural Product Social Molecular Networking (GNPS) platform to visualize, analyze, and annotate the compounds present in 17 extracts active against NCI-60 cell lines. Significant cytotoxic activity was found for Salacia crassifolia, Salacia elliptica, Simarouba versicolor, Diospyros hispida, Schinus terebinthifolia, Casearia sylvestris var. lingua, Magonia pubescens, and Rapanea guianensis. Molecular networking resulted in the annotation of 27 compounds. This strategy provided an initial overview of a complex and diverse natural product data set, yielded a large amount of chemical information, identified patterns and known compounds, and assisted in defining priorities for further studies.


Subject(s)
Ecosystem , High-Throughput Screening Assays , Plant Extracts/analysis , Plant Extracts/pharmacology , Brazil , Cell Line, Tumor , Geography , Humans , Inhibitory Concentration 50 , Solvents
11.
SLAS Discov ; 26(7): 870-884, 2021 08.
Article in English | MEDLINE | ID: mdl-33882749

ABSTRACT

The transfer of the small protein ubiquitin to a target protein is an intricately orchestrated process called ubiquitination that results in modulation of protein function or stability. Proper regulation of ubiquitination is essential, and dysregulation of this process is implicated in several human diseases. An example of a ubiquitination cascade that is a central signaling node in important disease-associated pathways is that of CBLB [a human homolog of a viral oncogene Casitas B-lineage lymphoma (CBL) from the Cas NS-1 murine retrovirus], a RING finger ubiquitin ligase (E3) whose substrates include a number of important cell-signaling kinases. These include kinases important in immune function that act in the T cell receptor and costimulatory pathways, the Tyro/Axl/MerTK (TAM) receptor family in natural killer (NK) cells, as well as growth factor receptor kinases like epidermal growth factor receptor (EGFR). Loss of CBLB has been shown to increase innate and adaptive antitumor immunity. This suggests that small-molecule modulation of CBLB E3 activity could enhance antitumor immunity in patients. To explore the hypothesis that enzymatic inhibition of E3s may result in modulation of disease-related signaling pathways, we established a high-throughput screen of >70,000 chemical entities for inhibition of CBLB activity. Although CBLB was chosen as a proof-of-principle target for inhibitor discovery, we demonstrate that our assay is generalizable to monitoring the activity of other ubiquitin ligases. We further extended our observed in vitro inhibition with additional cell-based models of CBLB activity. From these studies, we demonstrate that a class of natural product-based alkaloids, known as methyl ellipticiniums (MEs), is capable of inhibiting ubiquitin ligases intracellularly.


Subject(s)
Drug Discovery/methods , Enzyme Inhibitors/chemistry , In Vitro Techniques , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/chemistry , Animals , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Humans , Methylation , Mice , Signal Transduction/drug effects , Small Molecule Libraries , Ubiquitination/drug effects
12.
Chem Biol Drug Des ; 97(1): 77-86, 2021 01.
Article in English | MEDLINE | ID: mdl-32666679

ABSTRACT

A high-throughput screening assay was developed and applied to a large library of natural product extract samples, in order to identify compounds which preferentially inhibited the in vitro 2D growth of a highly metastatic osteosarcoma cell line (MG63.3) compared to a cognate parental cell line (MG63) with low metastatic potential. Evaluation of differentially active natural product extracts with bioassay-guided fractionation led to the identification of lovastatin (IC50  = 11 µm) and the limonoid toosendanin (IC50  = 26 nm). Other statins and limonoids were then tested, and cerivastatin was identified as a particularly potent (IC50  < 0.1 µm) and selective agent. These compounds potently and selectively induced apoptosis in MG63.3 cells, but not MG63. Assays with other cell pairs were used to examine the generality of these results. Statins and limonoids may represent unexplored opportunities for development of modulators of osteosarcoma metastasis. As cerivastatin was previously approved for clinical use, it could be considered for repurposing in osteosarcoma, pending validation in further models.


Subject(s)
Biological Products/pharmacology , Cell Proliferation/drug effects , High-Throughput Screening Assays/methods , Biological Products/chemistry , Biological Products/isolation & purification , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line , Cell Movement/drug effects , Cell Survival/drug effects , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Humans , Lovastatin/chemistry , Lovastatin/isolation & purification , Lovastatin/pharmacology , Melia/chemistry , Melia/metabolism , Monascus/chemistry , Monascus/metabolism , Osteosarcoma/metabolism , Osteosarcoma/pathology , Plant Extracts/chemistry , Pyridines/chemistry , Pyridines/isolation & purification , Pyridines/pharmacology , Seeds/chemistry , Seeds/metabolism
13.
J Med Virol ; 93(3): 1694-1701, 2021 03.
Article in English | MEDLINE | ID: mdl-32966645

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become pandemic since March 11, 2020. Thus, development and integration in clinics of fast and sensitive diagnostic tools are essential. The aim of the study is a development and evaluation of a one-step quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay (COVID-19 Amp) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection with an armored positive control and internal controls constructed from synthetic MS2-phage-based RNA particles. The COVID-19 Amp assay limit of detection was 103 copies/ml, the analytical specificity was 100%. A total of 109 biological samples were examined using COVID-19 Amp and World Health Organization (WHO)-based assay. Discordance in nine samples was observed (negative by the WHO-based assay) and discordant samples were retested as positive according to the results obtained from the Vector-PCRrv-2019-nCoV-RG assay. The developed COVID-19 Amp assay has high sensitivity and specificity, includes virus particles-based controls, provides the direct definition of the SARS-CoV-2 RdRp gene partial sequence, and is suitable for any hospital and laboratory equipped for RT-qPCR.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , Diagnostic Tests, Routine , Female , Genome, Viral/genetics , Humans , Male , Middle Aged , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Young Adult
14.
Chemistry ; 26(16): 3489-3493, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-31943434

ABSTRACT

Theranostic approaches rely on simultaneous diagnostic of a disease and its therapy. Here, we designed a DNA nanodevice, which can simultaneously report the presence of a specific RNA target through an increase in fluorescence and cleave it. High selectivity of RNA target recognition under near physiological conditions was achieved. The proposed approach can become a basis for the design of DNA nanomachines and robots for diagnostics and therapy of viral infections, cancer, and genetic disorders.


Subject(s)
DNA, Catalytic/genetics , Neoplasms/genetics , RNA/chemistry , RNA/metabolism , Virus Diseases/diagnosis , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Fluorescence , Humans , Neoplasms/chemistry , Theranostic Nanomedicine
15.
ACS Nano ; 13(11): 12301-12321, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31664817

ABSTRACT

Nucleic acids play a central role in all domains of life, either as genetic blueprints or as regulators of various biochemical pathways. The chemical makeup of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA), generally represented by a sequence of four monomers, also provides precise instructions for folding and higher-order assembly of these biopolymers that, in turn, dictate biological functions. The sequence-based specific 3D structures of nucleic acids led to the development of the directed evolution of oligonucleotides, SELEX (systematic evolution of ligands by exponential enrichment), against a chosen target molecule. Among the variety of functions, selected oligonucleotides named aptamers also allow targeting of cell-specific receptors with antibody-like precision and can deliver functional RNAs without a transfection agent. The advancements in the field of customizable nucleic acid nanoparticles (NANPs) opened avenues for the design of nanoassemblies utilizing aptamers for triggering or blocking cell signaling pathways or using aptamer-receptor combinations to activate therapeutic functionalities. A recent selection of fluorescent aptamers enables real-time tracking of NANP formation and interactions. The aptamers are anticipated to contribute to the future development of technologies, enabling an efficient assembly of functional NANPs in mammalian cells or in vivo. These research topics are of top importance for the field of therapeutic nucleic acid nanotechnology with the promises to scale up mass production of NANPs suitable for biomedical applications, to control the intracellular organization of biological materials to enhance the efficiency of biochemical pathways, and to enhance the therapeutic potential of NANP-based therapeutics while minimizing undesired side effects and toxicities.


Subject(s)
Aptamers, Nucleotide , Nanomedicine/methods , Nanoparticles , SELEX Aptamer Technique/methods , Animals , Cell Line, Tumor , Drug Delivery Systems , Humans , Immunotherapy , Mice , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasms/therapy , Nucleic Acids/chemistry , Nucleic Acids/therapeutic use
16.
Cell Chem Biol ; 26(8): 1133-1142.e4, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31155509

ABSTRACT

Identification of RNA-interacting pharmacophores could provide chemical probes and, potentially, small molecules for RNA-based therapeutics. Using a high-throughput differential scanning fluorimetry assay, we identified small-molecule natural products with the capacity to bind the discrete stem-looped structure of pre-miR-21. The most potent compound identified was a prodiginine-type compound, butylcycloheptyl prodiginine (bPGN), with the ability to inhibit Dicer-mediated processing of pre-miR-21 in vitro and in cells. Time-dependent RT-qPCR, western blot, and transcriptomic analyses showed modulation of miR-21 expression and its target genes such as PDCD4 and PTEN upon treatment with bPGN, supporting on-target inhibition. Consequently, inhibition of cellular proliferation in HCT-116 colorectal cancer cells was also observed when treated with bPGN. The discovery that bPGN can bind and modulate the expression of regulatory RNAs such as miR-21 helps set the stage for further development of this class of natural product as a molecular probe or therapeutic agent against miRNA-dependent diseases.


Subject(s)
Biological Products/pharmacology , MicroRNAs/antagonists & inhibitors , Prodigiosin/analogs & derivatives , Binding Sites/drug effects , Biological Products/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , HCT116 Cells , Humans , MicroRNAs/metabolism , Molecular Structure , Optical Imaging , Prodigiosin/chemistry , Prodigiosin/pharmacology , Structure-Activity Relationship , Tumor Cells, Cultured
17.
Analyst ; 144(2): 416-420, 2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30600819

ABSTRACT

Synthetic molecular machines have been explored to manipulate matter at the molecular level. Here, we designed a multifunctional DNA nano-construct, dubbed a 'DNA minimachine' (DMM), which (i) tightly binds complementary DNA; (ii) recognizes specific fragments with high selectivity and (iii) amplifies output signals. DMM1 detects lower concentrations of both single-stranded DNA and double-stranded DNA compared to a conventional probe. This study sets a direction towards the development of molecular machines for selective, sensitive and cost-efficient DNA analysis.


Subject(s)
Biosensing Techniques/methods , DNA/analysis , DNA/chemistry , Limit of Detection , Nanostructures/chemistry , Base Sequence , DNA/genetics , Nanotechnology
18.
SLAS Discov ; 22(9): 1093-1105, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28697309

ABSTRACT

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme crucial for cleavage of the covalent topoisomerase 1-DNA complex, an intermediate in DNA repair. TDP1 plays a role in reversing inhibition of topoisomerase I by camptothecins, a series of potent and effective inhibitors used in the treatment of colorectal, ovarian, and small-cell lung cancers. It is hypothesized that inhibition of TDP1 activity may enhance camptothecin sensitivity in tumors. Here, we describe the design, development, and execution of a novel assay to identify inhibitors of TDP1 present in natural product extracts. The assay was designed to address issues with fluorescent "nuisance" molecules and to minimize the detection of false-positives caused by polyphenolic molecules known to nonspecifically inhibit enzyme activity. A total of 227,905 purified molecules, prefractionated extracts, and crude natural product extracts were screened. This yielded 534 initial positives (0.23%). Secondary prioritization reduced this number to 117 (0.05% final hit rate). Several novel inhibitors have been identified showing micromolar affinity for human TDP1, including halenaquinol sulfate, a pentacyclic hydroquinone from the sponge Xestospongia sp.

19.
J Biomol Screen ; 21(3): 277-89, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26538432

ABSTRACT

Mitogen-activated protein kinase (MAPK) p38 is part of a broad and ubiquitously expressed family of MAPKs whose activity is responsible for mediating an intracellular response to extracellular stimuli through a phosphorylation cascade. p38 is central to this signaling node and is activated by upstream kinases while being responsible for activating downstream kinases and transcription factors via phosphorylation. Dysregulated p38 activity is associated with numerous autoimmune disorders and has been implicated in the progression of several types of cancer. A number of p38 inhibitors have been tested in clinical trials, with none receiving regulatory approval. One characteristic shared by all of the compounds that failed clinical trials is that they are all adenosine triphosphate (ATP)-competitive p38 inhibitors. Seeing this lack of mechanistic diversity as an opportunity, we screened ~32,000 substances in search of novel p38 inhibitors. Among the inhibitors discovered is a compound that is both non-ATP competitive and biologically active in cell-based models for p38 activity. This is the first reported discovery of a non-ATP-competitive p38 inhibitor that is active in cells and, as such, may enable new pharmacophore designs for both therapeutic and basic research to better understand and exploit non-ATP-competitive inhibitors of p38 activity.


Subject(s)
Drug Discovery/methods , Protein Kinase Inhibitors/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay/methods , High-Throughput Screening Assays , Humans , Inhibitory Concentration 50 , Protein Binding , Recombinant Fusion Proteins , Small Molecule Libraries , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
20.
J Biomol Screen ; 19(2): 242-52, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24051224

ABSTRACT

We have completed a robust high-content imaging screen for novel estrogen receptor α (ERα) agonists and antagonists by quantitation of cytoplasmic to nuclear translocation of an estrogen receptor chimera in 384-well plates. The screen was very robust, with Z' values >0.7 and coefficients of variation (CV) <5%. The screen utilized a stably transfected green fluorescent protein-tagged glucocorticoid/estrogen receptor (GFP-GRER) chimera, which consisted of the N-terminus of the glucocorticoid receptor fused to the human ERα ligand binding domain. The GFP-GRER exhibited cytoplasmic localization in the absence of ERα ligands and translocated to the nucleus in response to stimulation with ERα agonists and antagonists. The BD Pathway 435 imaging system was used for image acquisition, analysis of translocation dynamics, and cytotoxicity measurements. We screened 224,891 samples from our synthetic, pure natural product libraries, prefractionated natural product extracts library, and crude natural product extracts library, which produced a 0.003% hit rate. In addition to identifying several known ER ligands, five compounds were discovered that elicited significant activity in the screen. Transactivation potential studies demonstrated that two hit compounds behave as agonists, while three compounds elicited antagonist activity in MCF-7 cells.


Subject(s)
Cell Nucleus/metabolism , Cytoplasm/metabolism , Estrogen Receptor alpha/isolation & purification , Ligands , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/antagonists & inhibitors , Green Fluorescent Proteins/chemistry , Humans , MCF-7 Cells , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...