Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 273(Pt 1): 132829, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38844278

ABSTRACT

The development of a long-acting injectable drug delivery systems (DDS) of active pharmaceutical ingredients (API) holds great promise in addressing the challenges of treatment adherence, predominantly in HIV/AIDS. Polymers are inevitable carriers for the preparation of DDS, which are typically composed of polylactide (PLA), carbohydrates such as chitosan or cellulose derivatives. In this study, the tenofovir alafenamide (TAF) laden PLA-stereocomplex-chitosan nanoparticles (Sc-PLA-chitosan NPs) were developed through the spray-dried technique. These NPs had a mean particle size of 91 ± 8 nm and were incorporated into oleogels consisting of sesame oil and ethyl-cellulose. To enhance the syringeability of highly viscous oleogels, the commercially available aluminium oxide NPs were added with a size of 78 nm. The proposed DDS exhibits prolonged sustained release for up to 12 days in phosphate buffer pH 7.4. Noteworthy, the oleogels with Sc-PLA-chitosan NPs displayed extended tissue permeation properties indicating their potential long-acting in-vivo drug release. Collectively, this study recommends that the development of Sc-PLA-chitosan NPs-loaded oleogels represents a certainly adaptable long-acting injectables system for the delivery of APIs in the context of HIV/AIDS. This system is expected to contribute to improved and effective treatment adherence among patients infected with HIV and provide requisite therapeutic outcomes.


Subject(s)
Aluminum Oxide , Anti-HIV Agents , Chitosan , Nanoparticles , Organic Chemicals , Polyesters , Chitosan/chemistry , Nanoparticles/chemistry , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Anti-HIV Agents/administration & dosage , Polyesters/chemistry , Organic Chemicals/chemistry , Aluminum Oxide/chemistry , Drug Liberation , HIV Infections/drug therapy , Humans , Drug Carriers/chemistry , Particle Size , Drug Delivery Systems
2.
Sci Rep ; 14(1): 7310, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538710

ABSTRACT

This paper presents active analgesic and anti-inflammatory dressings based on cotton woven material with surface functionalization enabling drug implementation. For this purpose, lactide was polymerized on the surface of cotton textiles to achieve better compatibility with hydrophobic drug and polylactide (PLA)-based macromolecules. Subsequently, ibuprofen-loaded PLA and PLA-PEG were implemented through the exhausting method. Such material was tested for cytotoxicity (toward L929 mouse fibroblasts) and anti-inflammatory activity (towards human Hs68 fibroblasts) based on the secretion of pro-inflammatory cytokines IL-1ß and TNF-α. The results showed that the drug attachment and its performance are influenced by a combination of mercerization, bleaching and polylactide grafting, and the release of ibuprofen depends on the drug-loaded layer structure. Moreover, we show that cotton woven fabric with ibuprofen-loaded PLA and PLA-PEG cover layers had anti-inflammatory properties. These new dressings may open possibilities for developing prolonged analgesic and anti-inflammatory materials for wound healing or transdermal drug delivery.


Subject(s)
Anti-Inflammatory Agents , Ibuprofen , Mice , Animals , Humans , Ibuprofen/pharmacology , Ibuprofen/chemistry , Anti-Inflammatory Agents/pharmacology , Polyesters/chemistry , Textiles , Analgesics
3.
Sci Rep ; 14(1): 5764, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459219

ABSTRACT

The metabolic syndrome, often accompanied by hepatic manifestations, is a high-risk factor for developing cardiovascular disease. Patients with metabolic dysfunction associated with steatohepatic disease (MASDL) are at significant risk of developing coronary artery disease. Atherosclerosis is a systemic inflammatory disorder in which several factors, including dietary or infectious factors, can cause an inflammatory response. Helicobacter pylori (HP) bacteria have been implicated in the progression of proatherogenic vascular endothelial lesions, moreover, our previous study in an experimental in vivo model of Cavia porcellus showed that HP components and high-fat substances acted synergistically in promoting vascular endothelial inflammation, leading to an early onset of a proatherogenic environment. In the present study, our goal was to determine the contribution of HP components to the development of hepatic manifestations of metabolic syndrome in an experimental model. Our results showed that HP infection in animals exposed to a high-fat diet increased oxidative stress and lipid peroxidation, followed by endothelial lipid deposition, impaired endothelial apoptosis, cell lysis, and increased vascular stiffness. Finally, histopathological analysis of liver tissue showed signs of MASLD development in HP-infected animals fed a high-fat diet.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Metabolic Syndrome , Humans , Animals , Guinea Pigs , Metabolic Syndrome/complications , Diet, High-Fat/adverse effects , Liver , Risk Factors , Helicobacter Infections/microbiology
4.
Sci Rep ; 14(1): 4747, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38413775

ABSTRACT

Gram-negative spiral-shaped Helicobacter pylori (Hp) bacteria induce the development of different gastric disorders. The growing resistance of Hp to antibiotics prompts to search for new therapeutic formulations. A promising candidate is Mycobacterium bovis BCG (BCG) with immunomodulatory properties. Biodegradable mucoadhesive chitosan is a good carrier for delivering BCG mycobacteria to the gastric mucosal environment. This study aimed to show whether BCG bacilli are able to increase the phagocytic activity of Cavia porcellus-guinea pig macrophages derived from the bone marrow towards fluorescently labeled Escherichia coli. Furthermore, to encapsulate live BCG bacilli, in spray-dried chitosan microparticles (CHI-MPs), and assess the pH-dependent release of mycobacteria in pH conditions mimicking gastric (acidic) or gut (alkaline) milieu. Microparticles (MPs) were made of chitosan and coated with Pluronic F-127-(Plur) or N-Acetyl-D-Glucosamine-(GlcNAc) to increase the MPs resistance to low pH or to increase anti-Hp effect, respectively. Spray-drying method was used for microencapsulation of live BCG. The biosafety of tested CHI-MPs has been confirmed using cell models in vitro and the model of guinea pig in vivo. The CHI-MPs loaded with BCG released live mycobacteria at pH 3.0 (CHI-GlcNAc-MPs) or pH 8.0. (CHI-Plur-MPs). The CHI-MPs loaded with live BCG can be used for per os inoculation of Cavia porcellus to check the effectiveness of delivered mycobacteria in increasing anti-H. pylori host response.


Subject(s)
Chitosan , Helicobacter Infections , Helicobacter pylori , Mycobacterium bovis , Animals , Guinea Pigs , Chitosan/chemistry , BCG Vaccine , Hydrogen-Ion Concentration
5.
Molecules ; 29(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338335

ABSTRACT

Methanolic-aqueous extracts of Salvia tomentosa Miller roots, aerial parts, and inflorescences were examined for their content of polyphenolic derivatives and the antimicrobial and cytotoxic effect. In the polyphenolic-rich profile, rosmarinic, salvianolic, and lithospermic acids along with various derivatives were predominant. A total of twenty phenolic compounds were identified using the UPLC/DAD/qTOF-MS technique. These were caffeic acid, rosmarinic acid derivatives, lithospermic acid derivatives, salvianolic acids B, F, and K derivatives, as well as sagerinic acid, although rosmarinic acid (426-525 mg/100 g of dry weight-D.W.) and salvianolic acid B (83-346.5 mg/100 g D.W.) were significantly predominant in the metabolic profile. Strong antibacterial activity of S. tomentosa extracts was observed against Staphylococcus epidermidis (MIC/MBC = 0.625 mg/mL) and Bacillus cereus (MIC = 0.312-1.25 mg/mL). The extracts showed low cytotoxicity towards the reference murine fibroblasts L929 and strong cytotoxicity to human AGS gastric adenocarcinoma epithelial cells in the MTT reduction assay. The observed cytotoxic effect in cancer cells was strongest for the roots of 2-year-old plant extracts.


Subject(s)
Benzofurans , Depsides , Opportunistic Infections , Salvia miltiorrhiza , Salvia , Animals , Mice , Humans , Child, Preschool , Plant Extracts/pharmacology , Bacteria
6.
Int J Biol Macromol ; 258(Pt 1): 128754, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092121

ABSTRACT

3D printing was used to prepare implantable systems or tablets loaded with dolutegravir to explore their potential as long-acting implantables (LAIs). Our strategy relies on preparing a polylactide (PLA) filament loaded with the anti-HIV drug. Subsequently, 3D printing was performed under conditions that allowed the PLA to be simultaneously melted and the drug encapsulated within the printed strand. The dolutegravir release profiles indicated its sustained release for 47 days. Furthermore, neat and drug-loaded tablets were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA), while their morphology was assessed by scanning electron microscopy (SEM). Finally, their biocompatibility was proved by MTT assay against ISO standards recommended L929 mouse and human Hs68 skin fibroblast cells. All the results indicated that the 3D printing of PLA-based tablets could produce customized medications with potential applications against HIV.


Subject(s)
HIV Infections , Heterocyclic Compounds, 3-Ring , Oxazines , Piperazines , Polyesters , Pyridones , Mice , Humans , Animals , Tablets/chemistry , Printing, Three-Dimensional , Drug Liberation
7.
Methods Mol Biol ; 2749: 65-71, 2024.
Article in English | MEDLINE | ID: mdl-38133774

ABSTRACT

In this chapter, the procedure of isolation and propagation of guinea pig gastric tissue primary cells in cell culture in vitro is presented. Selected methods of microscopic imaging of cells are shown, including monitoring the ability of cells to migrate as a determinant of their activity. The primary cells that expanded in cell cultures in vitro have characteristics of natural cells and facilitate studying both the spontaneous and induced biological processes on the cellular level. Particularly, the primary cells derived from the guinea pig stomach were found to be a good model for studying the effects of bacteria-host interactions and the development of inflammatory responses driven by gastric pathogen Helicobacter pylori.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Guinea Pigs , Animals , Gastric Mucosa , Stomach
8.
J Inorg Biochem ; 249: 112389, 2023 12.
Article in English | MEDLINE | ID: mdl-37806005

ABSTRACT

Mixed-ligand complexes of cobalt(II) with two bioligands, viz. 2-picolinehydroxamic acid and the reduced Schiff base N-(2-hydroxybenzyl)phenylalanine, were studied in aqueous solution by potentiometry and UV-Vis spectroscopic analysis. The coordination mode of the complexes and their stability were determined and compared to their parent species. Stacking interactions between the rings present in the ligands influence the stability of the complexes. Also, UV-Vis spectroscopy revealed that the stacking interactions affected the intercalation of DNA and mixed-ligand complexes. The in vitro anticancer activity of the free ligand 2-picolinehydroxamic acid and the complexes was tested against cervical and gastric human adenocarcinoma epithelial cell lines. At concentrations of 0.06 and 0.11 mM, the mixed-ligand structures showed the ability to reduce gastric cancer cells with no inhibitory effect on mouse fibroblasts. The cytotoxic effect was accompanied by damage to the cell nuclei, which may confirm that the complexes demonstrate effective binding to DNA. No determination of minimal inhibitory and bactericidal/fungicidal concentrations against the test organisms was possible at higher complex concentrations due to precipitation.


Subject(s)
Coordination Complexes , Neoplasms , Animals , Mice , Humans , Cobalt/chemistry , Coordination Complexes/chemistry , Ligands , Phenylalanine/pharmacology , DNA/chemistry , Schiff Bases/chemistry , Copper/chemistry
9.
Molecules ; 28(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836602

ABSTRACT

This study evaluates the antioxidant properties and anti-inflammatory potential of polyphenolic acid-rich fractions of 80% methanolic extract from the hairy roots of Dracocephalum moldavica. The fractionation of the crude extract yielded the following: a diethyl ether fraction rich in caffeic acid (DM1) (25.85 mg/g DWE), an n-butyl fraction rich in rosmarinic acid (DM3) (43.94 mg/g DWE) and a water residue rich in salvianolic acid B (DM4) (51.46 mg/g DWE). The content of these compounds was determined using high-performance liquid chromatography (HPLC). Their antioxidant activity was evaluated based on DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt) and FRAP assays. The anti-inflammatory activity of the fractions was determined by their effect on nuclear factor kappa-B (NF-κB) activation and interleukin-1ß (IL-1ß) production in LPS E. coli stimulated monocytes. The level of pro-inflammatory IL-1ß in cells was measured using ELISA. The activation of NF-κB in THP1-Blue™ cells, resulting in the secretion of SEAP (secreted embryonic alkaline phosphatase), was detected spectrophotometrically using Quanti-Blue reagent. Among the tested fractions, the diethyl ether fraction (DM1) showed the highest antioxidant potential, with an EC50 value of 15.41 µg/mL in the DPPH assay and 11.47 µg/mL in ABTS and a reduction potential of 10.9 mM Fe(II)/g DWE in FRAP. DM1 at a concentration of 10 mg/mL also efficiently reduced LPS-induced SEAP secretion (53% inhibition) and IL-1ß production (47% inhibition) without affecting the normal growth of L929 fibroblast cells.


Subject(s)
Antioxidants , Plant Extracts , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , NF-kappa B , Ether , Lipopolysaccharides/pharmacology , Escherichia coli , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
10.
Sci Rep ; 13(1): 16305, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770504

ABSTRACT

Mycobacterium bovis onco-BCG bacilli used in immunotherapy of bladder cancer are candidates for training of immune cells towards microbial pathogens. Increasing antibiotic resistance of gastric pathogen Helicobacter pylori (Hp) prompts the search for new anti-Hp and immunomodulatory formulations. Colonization of gastric mucosa by Hp through mucin 5 AC (MUC5AC) ligands could potentially be a therapeutic target. The aim of this study was to examine the ability of onco-BCG mycobacteria to reduce Hp adhesion to gastric epithelial cells using Cavia porcellus model. Animals were inoculated per os with 0.85% NaCl, Hp alone, onco-BCG alone or with onco-BCG and Hp. After 7/28 days Mucin5AC and Hp binding to gastric epithelium were assessed in gastric tissue specimens by staining with anti-Mucin5AC and anti-Hp antibodies, respectively, both fluorescently labeled. Primary gastric epithelial cells were treated ex vivo with live Hp or Hp surface antigens (glycine extract or lipopolysaccharide) alone or with onco-BCG. In such cells MUC5AC and Hp binding were determined as above. Mycobacteria reduced the amount of MUC5AC animals infected with Hp and in gastric epithelial cells pulsed in vitro with Hp components. Decrease of MUC5AC driven in cell cultures in vitro and in gastric tissue exposed ex vivo to mycobacteria was related to diminished adhesion of H. pylori bacilli. Vaccine mycobacteria by diminishing the amount of MUC5AC in gastric epithelial cells may reduce Hp adhesion.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Mycobacterium , Guinea Pigs , Animals , BCG Vaccine/therapeutic use , Stomach , Gastric Mucosa/metabolism , Epithelial Cells/metabolism , Helicobacter Infections/microbiology
11.
Int J Biol Macromol ; 249: 126029, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37524285

ABSTRACT

Catheter-associated urinary tract infections (CAUTI) are a common complication associated with catheterization, leading to urosepsis, bacteriuria, and septicaemia. The present work focuses on 3D printing a urinary catheter with anti-infective properties using various concentrations of polyvinyl alcohol (PVA, e.g., 6-8 %), sodium alginate (NaAlg, e.g. 1-4 %), methylcellulose (MC, 5 %), polyethylene glycol (PEG, 5 %) impregnated with secnidazole, an antibiotic acting against Gram-negative bacteria. To produce suitable polymer ink for Pressure Assisted Microsyringe (PAM) 3D printing, the cross-linked between NaAlg and calcium chloride is necessary to prepare the catheter. The optimised catheter was found to have an outer diameter of 5 mm, an inner diameter of 3.5 mm, and a length of the catheter of 50 mm. The analysis by various methods confirms the successful incorporation of secnidazole in the 3D-printed catheter. A drug-loaded/coated catheter showed an initial drug release of 79 % following a sustained release to reach 100 % within 5 h. Weibull model fits well with the drug release data. The release models suggest the Quasi-Fickian diffusion mechanism from the system. Moreover, the secnidazole 3D printed catheter disrupted biofilms and suppressed all the Quorum sensing mediated virulence factors of two important keystone pathogens causing urinary tract infections.


Subject(s)
Polyvinyl Alcohol , Urinary Tract Infections , Humans , Urinary Catheters/adverse effects , Urinary Catheters/microbiology , Polyethylene Glycols , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , Printing, Three-Dimensional
12.
Int J Biol Macromol ; 245: 125544, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37356682

ABSTRACT

The polymeric cytisine-enriched fibers based on poly(3-hydroxybutyrate) were obtained using electrospinning method. The biocompatibility study, advanced thermal analysis and release of cytisine from the poly(3-hydroxybutyrate) fibers were carried out. The nanofibers' morphology was evaluated by scanning electron microscopy. The formation and description of phases during the thermal processes of fibers by the advanced thermal analysis were examined. The new quantitative thermal analysis of polymeric fibers with cytisine phases based on vibrational, solid and liquid heat capacities was presented. The apparent heat capacity of fibers was measured using the standard differential scanning calorimetry. The quantitative analysis allowed for the study of the glass transition and melting/crystallization process. The mobile amorphous fraction, degree of crystallinity and rigid amorphous fraction were determined depending on the thermal history of semicrystalline polymeric fibers. Furthermore, the cytisine dissolution behaviour was studied. It was observed that the kinetic of the release from polymeric nanofiber is delayed than for the marketed product. The immunosafety of the tested polymeric nanofibers with cytisine was confirmed by the Food and Drug Agency Guidance as well as the European Medicines Agency. The polymeric matrix with cytisine seems to be a promising candidate for the prolonged release formulation.


Subject(s)
Nanofibers , Polymers , Delayed-Action Preparations/chemistry , 3-Hydroxybutyric Acid , Polymers/chemistry , Nanofibers/chemistry , Calorimetry, Differential Scanning
13.
J Pharm Sci ; 112(8): 2137-2141, 2023 08.
Article in English | MEDLINE | ID: mdl-37327993

ABSTRACT

Naturally occurring compounds, such as tannic acid (TA), are perfect for constructing nanohybrids (NHs) with metal ions due to their anticarcinogenic, antimicrobial, and antioxidant properties. To date, the batch methods are the ones in which such NHs were constructed; however, those methods possess many drawbacks, such as low reproducibility or size variations. To overcome this limitation, microfluidic preparation is proposed for NHs construction composed of TA and iron (III). The spherical particles with a size between 70 and 150 nm and antimicrobial properties can be easily fabricated in a controlled manner.


Subject(s)
Anti-Infective Agents , Microfluidics , Reproducibility of Results , Tannins , Metals , Ions
14.
Sci Rep ; 13(1): 7039, 2023 04 29.
Article in English | MEDLINE | ID: mdl-37120681

ABSTRACT

Controlled delivery of therapeutic substance gives numerous advantages (prevents degradation, improves uptake, sustains concentration, lowers side effects). To encapsulate Salvia cadmica extracts (root or aerial part), enriched with polyphenols with immunomodulatory activity, in stereocomplexed microparticles (sc-PLA), for using them to enhance the immune response towards gastric pathogen Helicobacter pylori. Microparticles were made of biodegradable poly(lactic acid) (PLA) and poly(D-lactic acid) (PDLA). Their stereocomplexation was used to form microspheres and enhance the stability of the obtained particles in acidic/basic pH. The release of Salvia cadmica extracts was done in different pH (5.5, 7.4 and 8.0). The obtained polymers are safe in vitro and in vivo (guinea pig model). The sc-PLA microparticles release of S. cadmica extracts in pH 5.5, 7.4, and 8.0. S. cadmica extracts enhanced the phagocytic activity of guinea pig bone marrow-derived macrophages, which was diminished by H. pylori, and neutralized H. pylori driven enhanced production of tumor necrosis factor (TNF)-α and interleukin (IL)-10. The sc-PLA encapsulated S. cadmica extracts can be recommended for further in vivo study in guinea pigs infected with H. pylori to confirm their ability to improve an immune response towards this pathogen.


Subject(s)
Helicobacter pylori , Animals , Guinea Pigs , Polyesters/chemistry , Polymers/chemistry , Lactic Acid/chemistry , Tumor Necrosis Factor-alpha , Immunity
15.
J Ethnopharmacol ; 310: 116386, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-36921911

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The large number of secondary derivatives have been isolated from the genus Salvia with about 700 species, and used in the pharmacopoeia throughout the world. Various biological properties of Salvia formulations have been reported including as antioxidant, antimicrobial, hypotensive, anti-hyperglycemia, anti-hyperlipidemia, anti-cancer, and skin curative. Salvia cadmica Boiss. root and aerial part extracts enriched with polyphenols are bactericidal towards gastric pathogen Helicobacter pylori (Hp) and diminish deleterious effects induced by Hp lipopolysaccharide (LPS) towards gastric epithelial cells. AIM OF THIS STUDY: To examine the influence of S. cadmica extracts on the M1/M2 polarization of macrophages primed with Hp LPS vs standard LPS Escherichia coli (Ec), and the macrophage cytokine as well as phagocytic activity, which are affected during Hp infection. MATERIAL AND METHODS: Macrophages derived from THP-1 human monocytes primed with LPS Hp/Ec and/or S. cadmica extracts, were examined for the biomarkers of activation (surface, cytoplasmic or soluble), and phagocytic capacity. The bone marrow macrophages of Caviaporcellus were used to determine the engulfment of Hp. RESULTS: Priming of THP-1 cells (24h) with LPS Hp/Ec resulted in polarization of M1 macrophages, activation of nuclear factor kappa B, secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1 beta, macrophage chemotactic protein (MCP)-1, immunoregulatory IL-10, and production of reactive oxygen species. These effects were diminished after restimulation of cells with S. cadmica extracts. THP-1 macrophages exposed to studied extracts showed an increased phagocytic capacity, in conjunction with elevated CD11b/CD11d expression and enhanced production of inducible nitric oxide synthase. They also increased Hp engulfment by bone marrow macrophages. These effects were not related to a global DNA methylation. CONCLUSIONS: S. cadmica extracts possess an immunomodulating activity, which might be useful in control of H. pylori LPS driven activity of macrophages.


Subject(s)
Cytokines , Salvia , Humans , Cytokines/metabolism , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , DNA Methylation , Macrophages , Tumor Necrosis Factor-alpha/metabolism , Escherichia coli
16.
Sci Rep ; 13(1): 3107, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36813949

ABSTRACT

High antibiotic resistance of gastric pathogen Helicobacter pylori (Hp) and the ability to escape the host immune response prompt searching for therapeutic immunomodulators. Bacillus Calmette-Guerin (BCG) vaccine with Mycobacterium bovis (Mb) is a candidate for modulation the activity of immunocompetent cells, and onco-BCG formulation was successfully used in immunotherapy of bladder cancer. We determined the influence of onco-BCG on the phagocytic capacity of human THP-1 monocyte/macrophage cells, using the model of Escherichia coli bioparticles and Hp fluorescently labeled. Deposition of cell integrins CD11b, CD11d, CD18, membrane/soluble lipopolysaccharide (LPS) receptors, CD14 and sCD14, respectively, and the production of macrophage chemotactic protein (MCP)-1 were determined. Furthermore, a global DNA methylation, was also assessed. Human THP-1 monocytes/macrophages (TIB 202) primed or primed and restimulated with onco-BCG or Hp, were used for assessment of phagocytosis towards E. coli or Hp, surface (immunostaining) or soluble activity determinants, and global DNA methylation (ELISA). THP-1 monocytes/macrophages primed/restimulated with BCG showed increased phagocytosis capacity towards E. coli fluorescent particles, elevated expression of CD11b, CD11d, CD18, CD14, sCD14, increased MCP-1 secretion and DNA methylation. Preliminary results indicate that BCG mycobacteria may also induce the phagocytosis of H. pylori by THP-1 monocytes. Priming or priming and restimulation of monocytes/macrophages with BCG resulted in an increased activity of these cells, which was negatively modulated by Hp.


Subject(s)
Helicobacter pylori , Mycobacterium bovis , Humans , Monocytes/metabolism , BCG Vaccine/metabolism , Helicobacter pylori/metabolism , Lipopolysaccharide Receptors/metabolism , Escherichia coli/metabolism , Macrophages/metabolism
17.
Comput Struct Biotechnol J ; 21: 1312-1323, 2023.
Article in English | MEDLINE | ID: mdl-36814724

ABSTRACT

Due to their excellent prospects in biological applications, Schiff bases and their complexes are a source of continuing interest. The present study examines the formation of four cobalt(II) complexes with the reduced Schiff base N-(2-hydroxybenzyl)phenylalanine (PhAlaSal) in alkaline aqueous solution by pH-metry. UV-Vis and ESI-MS studies confirmed the model of proposed species. Kinetic analysis indicated that the single- and bi-ligand cobalt(II) complexes transitioned from octahedral to tetrahedral structures. The Schiff base and its complexes detected under physiological pH were tested for antimicrobial abilities and compared with analogous structures of the Schiff base derivative, N-(2-hydroxybenzyl)alanine (AlaSal). The ability of these structures to influence cell growth was tested on L929 mouse fibroblasts and on cervix and gastric adenocarcinoma cancer cell lines. N-(2-hydroxybenzyl)phenylalanine demonstrates greater antimicrobial efficacy than N-(2-hydroxybenzyl)alanine but also higher cytotoxicity; however, it is nonetheless effective against cancer cells. In turn, AlaSal demonstrates low cytotoxicity for fibroblasts and high cytotoxicity for gastric adenocarcinoma epithelial cells at bacteriostatic concentration for Helicobacter pylori and Candida strains. The presence of these microorganisms in the gastric milieu supports the development of gastritis and gastric cancer; AlaSal therapy may be simultaneously effective against both. Due to their cytotoxicity, Schiff base complexes are not suitable for use against fungal and bacterial infections, but may effectively prevent cancer cell growth. Data availability: Data will be made available on request.

18.
Sci Rep ; 12(1): 18284, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316430

ABSTRACT

Helicobacter pylori (Hp) Gram-negative bacteria cause gastritis or gastric ulcers. They may be involved in the development of systemic diseases i.e. coronary heart disease (CHD). Both Hp infection and CHD are related to inflammation accompanied by C-reactive protein (CRP), tumor necrosis factor alfa (TNF-α) and homocysteine. Low density lipoprotein (LDL) and triglicerides are a classic risk factors of CHD. Infrared spectroscopy has been introduced for monitoring chronic infections or endogenous disorders using specific absorption bands for biocomponents typed as diagnostic markers. In this study we selected specific motives of infrared radiation (IR) spectra for the sera from CHD patients infected with Hp. In total 141 sera were used: 90 from patients with CHD, all Hp positive, and 51 from healthy donors, 32 Hp negative and 21 Hp positive. Hp status was evaluated by anti-Hp IgG antibodies and/or 13C urea breath testing. IR spectra were measured using FT-IR/FT-NIR Spectrum 400 spectrometer (PerkinElmer) chemometrically analyzed using artificial neural networks and they showed differences in absorption bands corresponding to triglicerides, CRP, homocysteine, LDL and TNF-α, and selected component groups between CHD patients infected with Hp vs healthy uninfected donors (96.15% accuracy). Triglicerides and CRP were the best biomarkers linking Hp infection with CHD.


Subject(s)
Coronary Disease , Gastritis , Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/complications , Helicobacter Infections/diagnosis , Helicobacter Infections/microbiology , Helicobacter pylori/metabolism , Tumor Necrosis Factor-alpha , Spectroscopy, Fourier Transform Infrared , Gastritis/diagnosis , Biomarkers , C-Reactive Protein/metabolism , Neural Networks, Computer , Homocysteine
19.
Int J Biol Macromol ; 222(Pt A): 473-486, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36184983

ABSTRACT

The development of suitable drug delivery systems for prolonged action against HIV receives great attention in recent research. Herein, a long-acting injectable (LAI) of Tenofovir alafenamide-chitosan polymeric nanoparticles loaded oleogels developed with sesame oil and ethyl cellulose for prolonged release of the drug is reported for the first time. The research resulted with unique long-acting parenteral formulation for chronic anti-retroviral therapy, based on our experimental in-vitro and ex-vivo studies. The chitosan nanoparticles with 49 % drug content were produced through the spray-drying technique and characterized for their size (106-540 nm) and the other physico-chemical features through SEM, FT-IR, XRD, TGA, and DSC. The ethyl cellulose and sesame oil oleogels were developed through a heat-cool process by incorporating the drug-loaded chitosan nanoparticles. The oleogels exhibited extended release (56 %) of the drug for 16 days, which could be prolonged further to achieve the maximum drug release. Also, the ex-vivo permeation studies of the nanoparticles loaded oleogels demonstrated about 10-fold decrease in the flux and the permeation of the drug due to prolonged release of the drug across dual barriers of chitosan nanoparticles and ethyl cellulose gel matrix. The result provided proof-of-evidence that the developed Tenofovir alafenamide-chitosan polymeric nanoparticles loaded with ethyl cellulose oleogels could be potentially used as the long-acting injectable system for the treatment of patients infected with HIV/AIDS.


Subject(s)
Anti-HIV Agents , Chitosan , Nanoparticles , Humans , Chitosan/chemistry , Anti-HIV Agents/pharmacology , Spectroscopy, Fourier Transform Infrared , Sesame Oil , Nanoparticles/chemistry , Drug Liberation , Adenine , Drug Carriers/chemistry , Particle Size , Drug Delivery Systems
20.
Int J Mol Sci ; 23(11)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35683034

ABSTRACT

The Gastric pathogen Helicobacter pylori (HP) may influence the development of coronary heart disease (CHD). H. pylori induce reactive oxygen species (ROS), which transform cholesterol to 7-ketocholesterol (7-kCh), a CHD risk factor. Acetylsalicylic acid (ASA)-an Anti-aggregation drug used in CHD patients-may increase gastric bleeding and inflammation. We examined whether H. pylori driven ROS effects in the cell cultures of gastric epithelial cells (AGS) and vascular endothelial cells (HUVEC) progress in the milieu of 7-kCh and ASA. Cell cultures, exposed to 7-kCh or ASA alone or pulsed with the H. pylori antigenic complex-Glycine acid extract (GE), urease (UreA), cytotoxin associated gene A (CagA) protein or lipopolysaccharide (LPS), alone or with 7-kCh and ASA-were examined for ROS, apoptosis, cell integrity, interleukin (IL)-8, the activation of signal transducer, the activator of transcription 3 (STAT3), and wound healing. ASA and 7-kCh alone, and particularly in conjunction with H. pylori components, increased the ROS level and the rate of apoptosis, which was followed by cell disintegration, the activation of STAT3, and IL-8 elevation. AGS cells were unable to undergo wound healing. The cell ROS response to H. pylori components may be elevated by 7-kCh and ASA.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Antigens, Bacterial , Aspirin/metabolism , Aspirin/pharmacology , Endothelial Cells/metabolism , Epithelial Cells/metabolism , Gastric Mucosa/metabolism , Helicobacter Infections/metabolism , Helicobacter pylori/metabolism , Humans , Ketocholesterols , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...