Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
BMC Chem ; 18(1): 128, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978083

ABSTRACT

The inhibition effect of symmetrical Ball - type Zinc Phthalocyanine on Aluminum in 1mol/L hydrochloric acid was analyzed by electrochemical techniques. A novel ball-type zinc phthalocyanine (Zn-Pc) inhibitor has been synthesized and verified utilizing FTIR, nuclear magnetic resonance (1H NMR and 13C NMR), MALDI-TOF MS, and absorption spectroscopy (UV-Vis). In addition, laser-induced breakdown and photoluminescence spectroscopy were employed for additional study. Weight loss technique was employed to investigate the corrosion inhibition effectiveness of the synthesized Zn-Pc on Aluminum in 1mol/L hydrochloric acid at the range of variation temperatures (293-333 K). The inhibition efficiency of Zn-Pc increased with higher concentrations of Zn-Pc and decreased as the temperature increased. Furthermore, Zn-Pc demonstrated outstanding outcomes, achieving 72.9% at a very low inhibitor concentration (0.4 mmol/L) at 298 K. The experimental data for Zn-Pc Aluminum in 1mol/L hydrochloric acid obeys the Langmuir adsorption isotherm. Moreover, the corrosion system's thermodynamic parameters and activation energy were determined. Quantum chemical calculations applying the (DFT) Density Functional Theory method was conducted and applied in this study. These calculations played a pivotal role in elucidating molecular structures and reactivity patterns. Through DFT, numerous reactivity indicators were computed, providing valuable insights into the chemical behavior of the studied compounds. These indicators, such as frontier molecular orbitals, electron density, and molecular electrostatic potential, were subsequently correlated with experimental data.

2.
Biotechnol Bioeng ; 120(8): 2242-2252, 2023 08.
Article in English | MEDLINE | ID: mdl-37337921

ABSTRACT

The power performance of the bio-electrochemical fuel cells (BEFCs) depends mainly on the energy harvesting ability of the anode material. The anode materials with low bandgap energy and high electrochemical stability are highly desirable in the BEFCs. To address this issue, a novel anode is designed using indium tin oxide (ITO) modified by chromium oxide quantum dots (CQDs). The CQDs were synthesized using facile and advanced pulsed laser ablation in liquid (PLAL) technique. The combination of ITO and CQDs improved the optical properties of the photoanode by exhibiting a broad range of absorption in the visible to UV region. A systematic study has been performed to optimize the amount of CQDs and green Algae (Alg) film grown using the drop casting method. Chlorophyll (a, b, and total) content of algal cultures (with different concentrations) were optimized to investigate the power generation performance of each cell. The BEFC cell (ITO/Alg10/Cr3//Carbon) with optimized amounts of Alg and CQDs demonstrated enhanced photocurrent generation of 120 mA cm-2 at a photo-generated potential of 24.6 V m-2 . The same device exhibited a maximum power density of 7 W m-2 under continuous light illumination. The device also maintained 98% of its initial performance after 30 repeated cycles of light on-off measurements.


Subject(s)
Chlorophyta , Quantum Dots , Quantum Dots/chemistry , Electricity , Carbon
3.
ACS Appl Mater Interfaces ; 12(43): 48572-48579, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33074661

ABSTRACT

Effective remediation of produced water requires separating crude oil-water mixture and removing the dissolved organic pollutants. Membranes with selective wettability for water over oil enable the gravity-driven separation of an oil-water mixture by allowing water to permeate through while repelling oil. However, these membranes are often limited by their inability to remove the dissolved organic pollutants. In this work, a membrane with in-air superhydrophilic and underwater superoleophobic wettability is fabricated by thermal annealing of a stainless steel mesh. The resulting membrane possesses a hierarchical surface texture covered with a photocatalytic oxide layer composed of iron oxide and chromium oxide. The membrane exhibits chemical and mechanical robustness, which makes it suitable for remediation of crude oil and water mixture. Further, after being fouled by crude oil, the membrane can recover its inherent water-rich permeate flux upon visible light irradiation. Finally, the membrane demonstrates that it can separate surfactant-stabilized crude oil-in-water emulsion under gravity and decontaminate water-rich permeate by photocatalytic degradation of dissolved organic pollutants upon continuous irradiation of visible light.

4.
Pharmaceuticals (Basel) ; 13(8)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823699

ABSTRACT

In the current study, we present the correlation between the capability of laser-induced breakdown spectroscopy (LIBS) to monitor the elemental compositions of plants and their biological effects. The selected plant, Moringa oleifera, is known to harbor various minerals and vitamins useful for human health and is a potential source for pharmaceutical interventions. From this standpoint, we assessed the antibacterial and in vitro cytotoxicity of the bioactive components present in Moringa oleifera seed (MOS) extract. Detailed elemental analyses of pellets of MOSs were performed via LIBS. Furthermore, the LIBS outcome was validated using gas chromatography-mass spectrometry (GC-MS). The LIBS signal was recorded, and the presence of the essential elements (Na, Ca, Se, K, Mg, Zn, P, S, Fe and Mn) in the MOSs were examined. The bactericidal efficacy of the alcoholic MOS extract was examined against Escherichia coli (E. coli) and Staphylococcus aureus(S. aureus) by agar well diffusion (AWD) assays and scanning electron microscopy (SEM), which depicted greater inhibition against Gram-positive bacteria. The validity and DNA nuclear morphology of human colorectal carcinoma cells (HCT-116) cells were evaluated via an MTT assay and DAPI staining. The MTT assay results manifested a profoundly inhibitory action of MOS extract on HCT116 cell growth. Additionally, MOS extracts produced inhibitory action in colon cancer cells (HCT-116), whereas no inhibitory action was seen using the same concentrations of MOS extract on HEK-293 cells (non-cancerous cells), suggesting that MOS extracts could be non-cytotoxic to normal cells. The antibacterial and anticancer potency of these MOS extracts could be due to the presence of various bioactive chemical complexes, such as ethyl ester and D-allose and hexadecenoic, oleic and palmitic acids, making them an ideal candidate for pharmaceutical research and applications.

5.
Saudi J Biol Sci ; 27(7): 1743-1752, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32565691

ABSTRACT

The photo catalytic degradation, a proven chemical process used for the decontamination of organic/inorganic pollutants and microorganisms in water was implemented. In this work for the selective killing of cervical cancer cells (HeLa cells) by using nano-composite of ZnO (Zinc Oxcide), WO3 (tungsten oxide) and (n-WO3/ZnO) as a photo-catalyst under the irradiation of visible light. All the three nanostructured semiconducting materials (WO3, ZnO and n-WO3/ZnO) were synthesized by facile chemical precipitation method and their morphological and optical characterization studies were carried out to elucidate the observed enhancement in the photo-catalytic killing of HeLa cancer cells with n-WO3/ZnO as a photo-catalyst. After 60 min of photo-catalytic reaction with n-WO3/ZnO as a photo-catalyst, a survival viability of HeLa cancer cells as low as 15% was achieved (nearly 85% of killing), as compared to 65% of HeLa cancer cell survival viability (nearly 35% of killing) with individual use of WO3 and ZnO as photo-catalysts under the same irradiation and experimental conditions. This improved photo-catalytic killing of HeLa cancer cells using n-WO3/ZnO in the visible spectral region is attributed to the enhanced visible light absorption and reduced electron hole recombination, characteristically brought about in the n-WO3/ZnO composite material. As photo-catalytic killing of the cancer cells can be selective, localized and reasonably efficient, in principle, this method can be considered as a non-invasive targeted treatment option for killing any type of cancer cells. HeLa cells, in particular are the cervical cancer cell and the tumors in and around cervix, containing HeLa cells can be non-surgically accessed and photo-catalytically treated with appropriate photo-catalyst and light source.

6.
Photochem Photobiol ; 95(6): 1485-1494, 2019 11.
Article in English | MEDLINE | ID: mdl-31081131

ABSTRACT

An efficient method of photocatalytic degradation of methylparaben in water using Ag nanoparticles (NPs) loaded AgBr-mesoporous-WO3 composite photocatalyst (Ag/AgBr@m-WO3 ), under visible light is presented. In this process, quantification of methylparaben in water was carried out by high-performance liquid chromatography (HPLC) and the HPLC results showed a significant reduction of methylparaben in water due to the enhanced of photocatalytic degradation efficiency of Ag/AgBr@m-WO3 . For the material synthesis, highly ordered mesoporous-WO3 (m-WO3 ) was initially synthesized by sol-gel method and AgBr nanoparticles (NPs) were subsequently introduced in the pores of m-WO3 , and finally, the Ag nanoparticles were introduced by light irradiation. The enhanced photocatalytic degradation of methylparaben in water is attributed to the formation of surface plasmonic resonance (SPR) due to the introduction of Ag NPs on the surface of the catalyst. Also, the formation of heterojunction between AgBr and mesoporous-WO3 in Ag/AgBr@m-WO3 significantly inhibited the recombination of light-induced electron-hole pairs in the semiconductor composite. The morphological and optical characterizations of the synthesized photocatalysts (Ag/AgBr@m-WO3 ) were carried out using SEM, TEM, XDR, N2 adsorption-desorption, UV-VIS diffuse reflectance spectroscopy (DRS). Also, the photocatalytic studies using radical scavengers were carried out and the results indicated that O 2 · - is the main reactive species.

7.
Sci Rep ; 8(1): 15224, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30323306

ABSTRACT

Chemotherapy, the most commonly used therapeutic method for cancer, has the inherent constraint of low bioavailability. A number of physical cancer therapeutic treatments like radiation, ultrasound, photo-acoustic/photo thermal, microwave therapies are based on locating the afflicted sites with the help of imaging, but the serious drawbacks of these treatment options are that they damage the neighboring normal tissues and/or induce undesired cancer metastasis. In addition, these methods of treatment are very expensive and not in the reach of a common man especially in the developing countries. Therefore, innovative, less invasive and cost effective treatment methods with the help of less toxic drugs have been sought for treating cancer. In this work, photo-catalytic method of killing cancer cells, using the nanostructured silver loaded tungsten oxide (Ag/WO3) as photo-catalysts, in conjunction with broadband UV radiation is presented. Ag/WO3with two different mass ratios of Ag and WO3 (1% Ag/WO3 and 3% Ag/WO3) were synthesized, characterized and these nanostructured materials served as photo-catalysts in the process of killing cancer cells by photo-catalytic method. The advantage of loading Ag in WO3 is quite evident from the observed increase in the photo-catalytic killing of the HeLa cells. This photo-catalytic enhancement was effectively caused by the development of Schottky junction between Ag in WO3, which led to a substantial inhibition of photo-generated charge recombination and also by the stimulation of surface plasmon resonance in silver nanoparticles, which led to the enhanced visible light absorption by the material.


Subject(s)
Metal Nanoparticles/chemistry , Neoplasms/therapy , Oxides/pharmacology , Tungsten/pharmacology , Catalysis/drug effects , HeLa Cells , Humans , Light , Metal Nanoparticles/administration & dosage , Neoplasms/pathology , Oxides/chemistry , Photolysis/drug effects , Silver/chemistry , Silver/pharmacology , Surface Plasmon Resonance , Titanium/chemistry , Tungsten/chemistry , Ultraviolet Rays/adverse effects
8.
Sci Rep ; 8(1): 12864, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-30150764

ABSTRACT

Platinum (Pt) counter electrodes (CEs) have consistently shown excellent electrocatalytic performance and holds the record of the highest power conversion efficiency (PCE) for dye-sensitized solar cells (DSSCs). However, its use for large-scale production is limited either by high temperature required for thermal decomposition of its precursor or by wastage of the material leading to high cost or sophisticated equipment. Here, we report a novel photofabrication technique to fabricate highly transparent platinum counter electrodes by ultraviolet (UV) irradiation of platinic acid (H2PtCl6.6H2O) on rigid fluorine-doped tin oxide (FTO) and flexible indium-doped tin oxide (ITO) on polyethylene terephthalate (PET) substrates. The photofabrication technique is a facile and versatile method for the fabrication of Pt CEs for dye sensitized solar cells (DSSCs). The photofabricated Pt CEs were used to fabricate bifacial DSSCs with power conversion efficiencies (PCEs) attaining 7.29% for front illumination and 5.85% for rear illumination. The highest percentage ratio of the rear illumination efficiency to the front illumination efficiency (ηR) of 85.92% was recorded while the least ηR is 77.91%.

9.
Anal Chim Acta ; 1030: 33-41, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30032771

ABSTRACT

Laser induced breakdown spectroscopy (LIBS) is a versatile spectroscopic technique that requires little or no sample preparation and capable of simultaneous elemental sample analysis. Quantitative analysis of its spectra has been a major challenge due to self-absorption of the emitted radiation during plasma cooling and inadequate description of non-linear complex interactions taking place in the laser induced plasma. This work presents a novel chemo-metric tool, extreme learning machine (ELM) and its hybrid HHELM (homogenously hybridized ELM), for the first time in modeling the complex interactions of laser induced plasma and quantification of LIBS spectra. Internal reference preprocessing (IRP) method is also proposed as a novel method of enhancing the performance of ELM based chemo-metrics. Since the proposed chemo-metrics (ELM and HHELM) determine their input weights as well as their hidden biases in a random manner, ELM and HHELM are respectively hybridized with gravitational search algorithm (GSA) for optimization of the number of hidden neurons. Effect of IRP, obtained by normalizing the emission spectra intensities with the emission intensity that has highest upper level excitation energy and lowest transition probability, on the performance of the proposed GSA-ELM and GSA-HHELM chemo-metrics is investigated. The proposed models are implemented using spectra of seven bronze standard samples. Chemo-metrics with IRP (GSA-ELM-IRP and GSA-HHELM-IRP) show better generalization performance than those without IRP (GSA-ELM-WIRP and GSA-HHELM-WIRP) while GSA-HHELM based chemo-metrics perform better than their counterparts. The outstanding performance demonstrated by the proposed chemo-metrics and their self-absorption correction ability would definitely widen the applicability of LIBS and improve its precision for the quantitative analysis.

10.
Sci Rep ; 7(1): 7531, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28790392

ABSTRACT

A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m2g-1. As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle < 10 °) surfaces. The spray coated surfaces were found to exhibit much improved water jet resistance and thermal stability up to 400 °C compared to the surfaces fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.


Subject(s)
Carbon/chemistry , Eyeglasses , Hot Temperature , Nanoparticles/chemistry , Soot , Water/chemistry , Coated Materials, Biocompatible/chemistry , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Particle Size , Photoelectron Spectroscopy , Porosity , Spectrometry, X-Ray Emission , Surface Properties
11.
Sci Rep ; 7(1): 1686, 2017 05 10.
Article in English | MEDLINE | ID: mdl-28490742

ABSTRACT

Superhydrophilic and underwater superoleophobic surfaces were fabricated by facile spray coating of nanostructured WO3 on stainless steel meshes and compared its performance in oil-water separation with ZnO coated meshes. The gravity driven oil-water separation system was designed using these surfaces as the separation media and it was noticed that WO3 coated stainless steel mesh showed high separation efficiency (99%), with pore size as high as 150 µm, whereas ZnO coated surfaces failed in the process of oil-water separation when the pore exceeded 50 µm size. Since, nanostructured WO3 is a well known catalyst, the simultaneous photocatalytic degradation of organic pollutants present in the separated water from the oil water separation process were tested using WO3 coated surfaces under UV radiation and the efficiency of this degradation was found to be quite significant. These results assure that with little improvisation on the oil water separation system, these surfaces can be made multifunctional to work simultaneously for oil-water separation and demineralization of organic pollutants from the separated water. Fabrication of the separating surface, their morphological characteristics, wettability, oil water separation efficiency and photo-catalytic degradation efficiency are enunciated.

12.
Nat Commun ; 8: 14968, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28440292

ABSTRACT

Photoresponsive titania surfaces are of great interest due to their unique wettability change upon ultraviolet light illumination. However, their applications are often limited either by the inability to respond to visible light or the need for special treatment to recover the original wettability. Sensitizing TiO2 surfaces with visible light-absorbing materials has been utilized in photovoltaic applications. Here we demonstrate that a dye-sensitized TiO2 surface can selectively change the wettability towards contacting liquids upon visible light illumination due to a photo-induced voltage across the liquid and the underlying surface. The photo-induced wettability change of our surfaces enables external manipulation of liquid droplet motion upon illumination. We show demulsification of surfactant-stabilized brine-in-oil emulsions via coalescence of brine droplets on our dye-sensitized TiO2 surface upon visible light illumination. We anticipate that our surfaces will have a wide range of applications including microfluidic devices with customizable wettability, solar-driven oil-water clean-up and demulsification technologies.

13.
PLoS One ; 12(2): e0172218, 2017.
Article in English | MEDLINE | ID: mdl-28245225

ABSTRACT

In the present work, bismuth oxychloride nanoparticles-a light harvesting semiconductor photocatalyst-were synthesized by a facile hydrolysis route, with sodium bismuthate and hydroxylammonium chloride as the precursor materials. The as-synthesized semiconductor photocatalysts were characterized using X-ray diffraction analysis, Fourier transform infra-red spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques. The crystal structure, morphology, composition, and optical properties of these facile synthesized bismuth oxychloride nanoparticles (BiOCl NPs) were compared to those of traditional bismuth oxychloride. In addition, the photocatalytic performance of facile-synthesized BiOCl NPs and traditional BiOCl, as applied to the removal of hazardous organic dyes under visible light illumination, is thoroughly investigated. Our results reveal that facile-synthesized BiOCl NPs display strong UV-Vis light adsorption, improved charge carrier mobility and an inhibited rate of charge carrier recombination, when compared to traditional BiOCl. These enhancements result in an improved photocatalytic degradation rate of hazardous organic dyes under UV-Vis irradiance. For instance, the facile-synthesized BiOCl NPs attained 100% degradation of methylene blue and methyl orange dyes in approximately 30 mins under UV-Vis irradiation, against 55% degradation for traditional BiOCl under similar experimental conditions.


Subject(s)
Bismuth/chemistry , Nanoparticles , Organic Chemicals/chemistry , Semiconductors , Water Pollutants, Chemical/chemistry , Azo Compounds/chemistry , Catalysis , Hydrolysis , Light , Methylene Blue/chemistry , Photochemistry , Photoelectron Spectroscopy , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Ultraviolet Rays , Water Pollution , X-Ray Diffraction
14.
J Environ Sci Health B ; 51(6): 358-65, 2016.
Article in English | MEDLINE | ID: mdl-26950676

ABSTRACT

Laser induced breakdown spectroscopy (LIBS) was applied for the detection of carcinogenic elements like bromine in four representative brands of loaf bread samples and the measured bromine concentrations were 352, 157, 451, and 311 ppm, using Br I (827.2 nm) atomic transition line as the finger print atomic transition. Our LIBS system is equipped with a pulsed laser of wavelength 266 nm with energy 25 mJ pulse(-1), 8 ns pulse duration, 20 Hz repetition rate, and a gated ICCD camera. The LIBS system was calibrated with the standards of known concentrations in the sample (bread) matrix and such plot is linear in 20-500 ppm range. The capability of our system in terms of limit of detection and relative accuracy with respect to the standard inductively coupled plasma mass spectrometry (ICPMS) technique was evaluated and these values were 5.09 ppm and 0.01-0.05, respectively, which ensures the applicability of our system for Br trace level detection, and LIBS results are in excellent agreement with that of ICPMS results.


Subject(s)
Bread/analysis , Bromine/analysis , Carcinogens/analysis , Food Analysis/methods , Spectrum Analysis/methods , Calibration , Lasers , Light , Mass Spectrometry/methods , Spectrum Analysis/instrumentation , Ultraviolet Rays
15.
Lasers Med Sci ; 31(3): 573-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26886588

ABSTRACT

Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique with numerous advantages such as rapidity, multi-elemental analysis, no specific sample preparation requirements, non-destructiveness, and versatility. It has been proven to be a robust elemental analysis tool attracting interest because of being applied to a wide range of materials including biomaterials. In this paper, we have performed spectroscopic studies on gallstones which are heterogeneous in nature using LIBS and wavelength dispersive X-ray fluorescence (WD-XRF) techniques. It has been observed that the presence and relative concentrations of trace elements in different kind of gallstones (cholesterol and pigment gallstones) can easily be determined using LIBS technique. From the experiments carried out on gallstones for trace elemental mapping and detection, it was found that LIBS is a robust tool for such biomedical applications. The stone samples studied in the present paper were classified using the Fourier transform infrared (FTIR) spectroscopy. WD-XRF spectroscopy has been applied for the qualitative and quantitative analysis of major and trace elements present in the gallstone which was compared with the LIBS data. The results obtained in the present paper show interesting prospects for LIBS and WD-XRF to study cholelithiasis better.


Subject(s)
Gallstones/chemistry , Bile Acids and Salts/chemistry , Humans , Lasers , Limit of Detection , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Trace Elements/chemistry
16.
Appl Opt ; 54(24): 7342-9, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26368771

ABSTRACT

A laser-induced breakdown spectrometer (LIBS) was built and optimized to detect levels of toxic elements such as lead, cadmium, and arsenic present in the roots of extracted teeth of smokers and nonsmokers. Sixty extracted teeth from patients having a history of chronic periodontitis were divided into two groups of 30 teeth each for smoker and nonsmoker patients and, as controls, a third group of 30 patients who did not have a history of chronic periodontitis. The respective elemental concentration (Pb, Cd, and As) 23-29, 0.26-0. 31, and 0.64-11 ppm are for nonsmokers, 35-55, 0.33-0.51, and 0.91-1.5 ppm are for smokers, and lastly 0.17-0.31, 0.01-0.05, and 0.05-0.09 ppm are for control group. In order to test the validity of the results achieved using our LIBS system, a standard inductively coupled plasma (ICP) technique was also applied for the analysis of the same teeth samples, and ICP results were found to be in excellent agreement with our LIBS results. In addition to this, the gingival index, plaque index, clinical attachment loss (CAL) and probing pocket depth were also recorded. Our LIBS spectroscopic analysis showed high levels of lead, cadmium, and arsenic concentration on root surfaces of teeth, which may be due to CAL.


Subject(s)
Chronic Periodontitis/diagnosis , Smoking , Spectrophotometry/methods , Tooth/chemistry , Arsenic/chemistry , Cadmium/chemistry , Calibration , Chronic Periodontitis/physiopathology , Dental Plaque Index , Female , Gingiva/pathology , Humans , Inflammation , Lasers , Lead/chemistry , Male , Oral Hygiene , Periodontal Index , Periodontics/methods , Risk Factors , Tobacco Smoke Pollution
17.
Dalton Trans ; 44(36): 15888-96, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26279412

ABSTRACT

The synthetic techniques for novel photocatalytic crystals had evolved by a trial-and-error process that spanned more than two decades, and an insight into the photocatalytic crystal growth process is a challenging area and prerequisite for achieving an excellent photoactivity. Bismuth nanoparticle based hybrids, such as Bi/BiOCl composites, have recently been investigated as highly efficient photocatalytic systems because of the localized surface plasmon resonance (LSPR) of nanostructured bismuth. In this work, the observation towards the formation and growth of bismuth nanoparticles onto 2D structured BiOCl photocatalysts has been performed using a transmission electron microscope (TEM) directly in real time. The growth of bismuth nanoparticles on BiOCl nanosheets can be emulated and speeded up driven by the electron beam (e(-) beam) in TEM. The crystallinity, growth and the elemental evolution during the formation of bismuth nanoparticles have also been probed in this work.

18.
Appl Opt ; 54(17): 5560-7, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-26192861

ABSTRACT

A spectrometer based on pulsed UV laser-induced breakdown spectroscopy (LIBS) and a highly sensitive intensified charged coupled device camera was developed to determine the carcinogenic substances like fluorine in various brands of cigarettes available commercially. In order to achieve the high sensitivity required for the determination of trace amounts of fluoride in cigarettes and eventually the best limit of detection, the experimental parameters (influence of incident laser energy on LIBS signal intensity and time response of plasma emission) were optimized. In addition, the plasma parameters like electron temperature and electron density were evaluated using Boltzman's plot for cigarette tobacco for the first time. To the best of our knowledge, LIBS has never been applied to determine the fluorine concentration in cigarettes. Along with the detection of fluorine, other trace metals like Ba, Ca, Ni, Cu, and Na were also detected in cigarettes. For determination of the concentration of fluorine, calibration curve was drawn by preparing standard samples in various fluoride concentrations in tobacco matrix. The concentration of fluorine in different cigarette tobacco samples was 234, 317, 341, and 360 ppm respectively, which is considered to be much higher than the safe permissible limits. The limit of detection of our LIBS spectrometer was 14 ppm for fluorine.

19.
Appl Opt ; 54(8): 2123-31, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25968393

ABSTRACT

The UV single-pulsed (SP) laser-induced breakdown spectroscopy (LIBS) system was developed to detect the carcinogenic metals in human kidney stones extracted through the surgical operation. A neodymium yttrium aluminium garnet laser operating at 266 nm wavelength and 20 Hz repetition rate along with a spectrometer interfaced with an intensified CCD (ICCD) was applied for spectral analysis of kidney stones. The ICCD camera shutter was synchronized with the laser-trigger pulse and the effect of laser energy and delay time on LIBS signal intensity was investigated. The experimental parameters were optimized to obtain the LIBS plasma in local thermodynamic equilibrium. Laser energy was varied from 25 to 50 mJ in order to enhance the LIBS signal intensity and attain the best signal to noise ratio. The parametric dependence studies were important to improve the limit of detection of trace amounts of toxic elements present inside stones. The carcinogenic metals detected in kidney stones were chromium, cadmium, lead, zinc, phosphate, and vanadium. The results achieved from LIBS system were also compared with the inductively coupled plasma-mass spectrometry analysis and the concentration detected with both techniques was in very good agreement. The plasma parameters (electron temperature and density) for SP-LIBS system were also studied and their dependence on incident laser energy and delay time was investigated as well.


Subject(s)
Carcinogens/chemistry , Kidney Calculi/pathology , Lasers, Solid-State , Metals/chemistry , Spectrophotometry/methods , Adult , Cadmium/analysis , Calcium/analysis , Calibration , Chromium/analysis , Electrons , Humans , Lead/analysis , Light , Male , Middle Aged , Optical Phenomena , Phosphorus/analysis , Temperature , Thermodynamics , Ultraviolet Rays , Young Adult , Zinc/analysis
20.
Article in English | MEDLINE | ID: mdl-25560257

ABSTRACT

In the current study, nano-particulated drugs-Amphotericin-B, Ketoconazole and Thymoquinone (an active ingredient of Nigella sativa)-were prepared using the ball milling technique, and their particle sizes were examined by transmission electron microscopy (TEM) and using a particle size analyzer. The grain sizes of the prepared compounds were found in between 5 to 20 nm, and exhibited quasi-spherical morphology. The antifungal activity of each nano-particulated drug was investigated in vitro against Candida albicans yeasts and Candida biofilm, and compared with their micro-structured conventional forms. Nano-sized drugs were found to be two to four times more effective in disinfecting both the Candida yeasts and Candida biofilm. The study is a first of its kind as nano-forms of drugs have not been studied against Candida and Candida biofilm before. Further investigations are required for the determination of the clinical significance of the nano-formulation of antifungal substances.


Subject(s)
Amphotericin B/chemical synthesis , Amphotericin B/pharmacology , Benzoquinones/chemical synthesis , Benzoquinones/pharmacology , Candida albicans/drug effects , Ketoconazole/chemical synthesis , Ketoconazole/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Biofilms/drug effects , Microbial Sensitivity Tests , Nanoparticles , Particle Size , Species Specificity , Yeasts/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...