Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 349(6247): aab0671, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26228154

ABSTRACT

The structure and composition of cometary constituents, down to their microscopic scale, are critical witnesses of the processes and ingredients that drove the formation and evolution of planetary bodies toward their present diversity. On board Rosetta's lander Philae, the Comet Infrared and Visible Analyser (CIVA) experiment took a series of images to characterize the surface materials surrounding the lander on comet 67P/Churyumov-Gerasimenko. Images were collected twice: just after touchdown, and after Philae finally came to rest, where it acquired a full panorama. These images reveal a fractured surface with complex structure and a variety of grain scales and albedos, possibly constituting pristine cometary material.

2.
Science ; 341(6153): 1238670, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-24072924

ABSTRACT

The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.

3.
Science ; 317(5842): 1206-10, 2007 Aug 31.
Article in English | MEDLINE | ID: mdl-17673623

ABSTRACT

The Mars Exploration Rover (MER), Opportunity, showed that layered sulfate deposits in Meridiani Planum formed during a period of rising acidic ground water. Crystalline hematite spherules formed in the deposits as a consequence of aqueous alteration and were concentrated on the surface as a lag deposit as wind eroded the softer sulfate rocks. On the basis of Mars Express Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) orbital data, we demonstrate that crystalline hematite deposits are associated with layered sulfates in other areas on Mars, implying that Meridiani-like ground water systems were indeed widespread and representative of an extensive acid sulfate aqueous system.


Subject(s)
Ferric Compounds , Mars , Water , Extraterrestrial Environment
4.
Nature ; 438(7068): 623-7, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16319882

ABSTRACT

The recent identification of large deposits of sulphates by remote sensing and in situ observations has been considered evidence of the past presence of liquid water on Mars. Here we report the unambiguous detection of diverse phyllosilicates, a family of aqueous alteration products, on the basis of observations by the OMEGA imaging spectrometer on board the Mars Express spacecraft. These minerals are mainly associated with Noachian outcrops, which is consistent with an early active hydrological system, sustaining the long-term contact of igneous minerals with liquid water. We infer that the two main families of hydrated alteration products detected-phyllosilicates and sulphates--result from different formation processes. These occurred during two distinct climatic episodes: an early Noachian Mars, resulting in the formation of hydrated silicates, followed by a more acidic environment, in which sulphates formed.


Subject(s)
Aluminum Silicates/analysis , Aluminum Silicates/chemistry , Climate , Extraterrestrial Environment/chemistry , Mars , Clay , Hydrogen-Ion Concentration , Iron/analysis , Magnesium/analysis , Space Flight , Spacecraft , Sulfates/analysis , Sulfates/chemistry , Water/analysis , Water/chemistry
5.
Science ; 307(5715): 1581-4, 2005 Mar 11.
Article in English | MEDLINE | ID: mdl-15718426

ABSTRACT

The Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) visible-infrared imaging spectrometer extensively observed regions of Mars with latitudes above 70 degrees N in late 2004 (heliocentric longitude from Ls 93 degrees to Ls 127 degrees ). The extent of water ice at the surface and the size of ice grains were monitored as a function of time. Bright, small-grained frost, which initially covered a large fraction of the polar cap, waned in favor of large-grained ice. In outlying regions, dominated by large-grained ice, the albedo increased over the period. Evaluating the dust content was model dependent. However, contamination of ice by dust was low.


Subject(s)
Ice , Mars , Carbon Dioxide , Extraterrestrial Environment , Seasons , Spacecraft , Spectroscopy, Near-Infrared , Spectrum Analysis , Water
6.
Science ; 307(5715): 1594-7, 2005 Mar 11.
Article in English | MEDLINE | ID: mdl-15718427

ABSTRACT

Data from the Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) on the Mars Express spacecraft identify the distinct mafic, rock-forming minerals olivine, low-calcium pyroxene (LCP), and high-calcium pyroxene (HCP) on the surface of Mars. Olivine- and HCP-rich regions are found in deposits that span the age range of geologic units. However, LCP-rich regions are found only in the ancient Noachian-aged units, which suggests that melts for these deposits were derived from a mantle depleted in aluminum and calcium. Extended dark regions in the northern plains exhibit no evidence of strong mafic absorptions or absorptions due to hydrated materials.


Subject(s)
Iron Compounds , Magnesium Compounds , Mars , Minerals , Silicates , Absorption , Atmosphere , Calcium , Extraterrestrial Environment , Geologic Sediments , Spacecraft , Spectroscopy, Near-Infrared , Spectrum Analysis , Time , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...