Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Rev Sci Instrum ; 88(11): 113114, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29195383

ABSTRACT

Electrical applications require the development of electric field sensors that can reproduce vector electric field waveforms with a very large spectral width ranging from 50 Hz to at least 70 MHz. This makes it possible to measure both the normal operation modes of electrical components and abnormal behaviors such as the corona emission and partial discharges. In this work, we aim to develop a fully dielectric sensor capable of measuring two components of the electric field using a wide class of optical crystals including anisotropic ones, whereas most of the efforts in this field have been devoted to isotropic crystals. We report the results of the measurements performed at 50 Hz and with a lightning impulse, to validate the sensor.

2.
Ann Biomed Eng ; 41(4): 863-71, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23229282

ABSTRACT

Heat dissipation during sport exercise is an important physiological mechanism that may influence athletic performance. Our aim was to test the hypothesis that differences exist in the dynamics of exercise-associated skin temperature changes between trained and untrained subjects. We investigated thermoregulation of a local muscle area (muscle-tendon unit) involved in a localized steady-load exercise (standing heels raise) using infrared thermography. Seven trained female subjects and seven untrained female controls were studied. Each subject performed standing heels raise exercise for 2 min. Thermal images were recorded prior to exercise (1 min), during exercise (2 min), and after exercise (7 min). The analysis of thermal images provided the skin temperature time course, which was characterized by a set of descriptive parameters. Two-way ANOVA for repeated measures detected a significant interaction (p = 0.03) between group and time, thus indicating that athletic subjects increased their skin temperature differently with respect to untrained subjects. This was confirmed by comparing the parameters describing the speed of rise of skin temperature. It was found that trained subjects responded to exercise more quickly than untrained controls (p < 0.05). In conclusion, physical training improves the ability to rapidly elevate skin temperature in response to a localized exercise in female subjects.


Subject(s)
Exercise/physiology , Skin Temperature/physiology , Adolescent , Athletes , Biomedical Engineering , Body Temperature Regulation/physiology , Female , Humans , Swimming/physiology , Thermography , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...