Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
NPJ Biofilms Microbiomes ; 7(1): 42, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33963194

ABSTRACT

The core gut microbiome of adult honeybee comprises a set of recurring bacterial phylotypes, accompanied by lineage-specific, variable, and less abundant environmental bacterial phylotypes. Several mutual interactions and functional services to the host, including the support provided for growth, hormonal signaling, and behavior, are attributed to the core and lineage-specific taxa. By contrast, the diversity and distribution of the minor environmental phylotypes and fungal members in the gut remain overlooked. In the present study, we hypothesized that the microbial components of forager honeybees (i.e., core bacteria, minor environmental phylotypes, and fungal members) are compartmentalized along the gut portions. The diversity and distribution of such three microbial components were investigated in the context of the physico-chemical conditions of different gut compartments. We observed that changes in the distribution and abundance of microbial components in the gut are consistently compartment-specific for all the three microbial components, indicating that the ecological and physiological interactions among the host and microbiome vary with changing physico-chemical and metabolic conditions of the gut.


Subject(s)
Bacteria , Bees , Biodiversity , Fungi , Gastrointestinal Microbiome , Animals , Bacteria/classification , Bacteria/ultrastructure , Fungi/classification , Fungi/ultrastructure , Metagenome , Metagenomics/methods
2.
Front Microbiol ; 11: 547031, 2020.
Article in English | MEDLINE | ID: mdl-33329418

ABSTRACT

The family Pentatomidae (Hemiptera: Heteroptera) includes several invasive stink bug species capable to attack a large number of wild and cultivated plants, causing several damages to different crops. Pentatomids rely on obligate symbiotic associations with bacteria of the family Enterobacteriaceae, mainly of the genus Pantoea. A distinctive trait of these associations is the transmission route: during oviposition, females smear egg masses with symbiont-containing secretions, which are ingested by newly hatched nymphs, allowing the symbiont to pass through their digestive tract and establish in the crypts of the posterior midgut. Preventing newborns from orally acquiring symbionts seriously affects their fitness and survival. This symbiont inheritance process can be manipulated to develop innovative pest control measures by sterilization of egg masses prior to nymph hatching. This review summarizes the recent knowledge advances concerning the gut primary symbionts of pentatomids, with a specific focus on the most troubling pest species for agriculture. Current understanding of host colonization dynamics in pentatomids is presented, as well as the phenotypic effects determined in different insect species by the alteration of vertical transmission. Details on the current knowledge on the whole bacterial communities accompanying primary symbionts are analyzed. The recent research exploiting the perturbation of symbiont acquisition by pentatomid nymphs is discussed, by considering published work on laboratory and field trials with several active substances. These translational strategies are presently regarded as promising for limiting the populations of many important pentatomid pests in a sustainable way.

3.
Insects ; 11(9)2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32899545

ABSTRACT

Phytoplasma transmission takes place by insect vectors through an Acquisition Access Period (AAP), Latency Period (LP) and Inoculation Access Period (IAP). Generally, phytoplasmas are believed to be transmitted more efficiently by nymphs because they need a long LP to reach the salivary glands before becoming infective. The transmission can start from adults as well, but in this case a long LP may exceed the insect's lifespan. However, previous evidence has indicated that adults can undergo a shorter LP, even though little knowledge is available regarding the phytoplasma temporal dynamics during this period. Here, we investigate the minimum time required by the phytoplasma to colonize the vector midgut and salivary glands, and finally to be inoculated into a plant. We used the leafhopper Euscelidius variegatus to investigate the life cycle of flavescence dorée phytoplasma (FDP). Phytoplasma-free E. variegatus adults were left on broad beans (BBs) infected with FDP for an AAP of 7 days. Subsequently, they were individually transferred onto a healthy BB for seven different IAPs, each one lasting 24 h from day 8 to 14. Molecular analyses and fluorescence in situ hybridization were performed for FDP detection. FDP was found in the leafhopper midgut from IAP 1 with an infection rate reaching 50%, whereas in the salivary glands it was found from IAP 2 with an infection rate reaching 30%. FDP was also detected in BBs from IAP 4, with infection rates reaching 10%. Our results represent an important step to further deepen the knowledge of phytoplasma transmission and its epidemiology.

4.
Environ Microbiol ; 21(11): 4343-4359, 2019 11.
Article in English | MEDLINE | ID: mdl-31502415

ABSTRACT

Popillia japonica Newman (Coleoptera: Scarabaeidae) is a highly polyphagous invasive beetle originating from Japan. This insect is highly resilient and able to rapidly adapt to new vegetation. Insect-associated microorganisms can play important roles in insect physiology, helping their hosts to adapt to changing conditions and potentially contributing to an insect's invasive potential. Such symbiotic bacteria can be part of a core microbiota that is stably transmitted throughout the host's life cycle or selectively recruited from the environment at each developmental stage. The aim of this study was to investigate the origin, stability and turnover of the bacterial communities associated with an invasive population of P. japonica from Italy. Our results demonstrate that soil microbes represent an important source of gut bacteria for P. japonica larvae, but as the insect develops, its gut microbiota richness and diversity decreased substantially, paralleled by changes in community composition. Notably, only 16.75% of the soil bacteria present in larvae are maintained until the adult stage. We further identified the micro-environments of different gut sections as an important factor shaping microbiota composition in this species, likely due to differences in pH, oxygen availability and redox potential. In addition, P. japonica also harboured a stable bacterial community across all developmental stages, consisting of taxa well known for the degradation of plant material, namely the families Ruminococcacae, Christensenellaceae and Lachnospiraceae. Interestingly, the family Christensenallaceae had so far been observed exclusively in humans. However, the Christensenellaceae operational taxonomic units found in P. japonica belong to different taxonomic clades within this family.


Subject(s)
Coleoptera/growth & development , Coleoptera/microbiology , Gastrointestinal Microbiome , Life Cycle Stages , Animals , Bacteria/classification , Female , Male
5.
Front Physiol ; 10: 795, 2019.
Article in English | MEDLINE | ID: mdl-31281266

ABSTRACT

Insect immunity is a crucial process in interactions between host and microorganisms and the presence of pathogenic, commensal, or beneficial bacteria may result in different immune responses. In Hemiptera vectors of phytoplasmas, infected insects are amenable to carrying high loads of phytopathogens, besides hosting other bacterial affiliates, which have evolved different strategies to be retained; adaptation to host response and immunomodulation are key aspects of insect-symbiont interactions. Most of the analyses published to date has investigated insect immune response to pathogens, whereas few studies have focused on the role of host immunity in microbiota homeostasis and vectorial capacity. Here the expression of immune genes in the leafhopper vector of phytoplasmas Euscelidius variegatus was investigated following exposure to Asaia symbiotic bacteria, previously demonstrated to affect phytoplasma acquisition by leafhoppers. The expression of four genes related to major components of immunity was measured, i.e., defensin, phenoloxidase, kazal type 1 serine protease inhibitor and Raf, a component of the Ras/Raf pathway. The response was separately tested in whole insects, midguts and cultured hemocytes. Healthy individuals were assessed along with specimens undergoing early- and late-stage phytoplasma infection. In addition, the adhesion grade of Asaia strains was examined to assess whether symbionts could establish a physical barrier against phytoplasma colonization. Our results revealed a specific activation of Raf in midguts after double infection by Asaia and flavescence dorée phytoplasma. Increased expression was observed already in early stages of phytoplasma colonization. Gut-specific localization and timing of Raf activation are consistent with the role played by Asaia in limiting phytoplasma acquisition by E. variegatus, supporting the involvement of this gene in the anti-pathogen activity. However, limited attachment capability was found for Asaia under in vitro experimental conditions, suggesting a minor contribution of physical phytoplasma exclusion from the vector gut wall. By providing evidence of immune modulation played by Asaia, these results contribute to elucidating the molecular mechanisms regulating interference with phytoplasma infection in E. variegatus. The involvement of Raf suggests that in the presence of reduced immunity (reported in Hemipterans), immune genes can be differently regulated and recruited to play additional functions, generally played by genes lost by hemipterans.

6.
Environ Microbiol Rep ; 9(2): 91-103, 2017 04.
Article in English | MEDLINE | ID: mdl-27886661

ABSTRACT

The pivotal role of diet in shaping gut microbiota has been evaluated in different animal models, including insects. Drosophila flies harbour an inconstant microbiota among which acetic acid bacteria (AAB) are important components. Here, we investigated the bacterial and AAB components of the invasive pest Drosophila suzukii microbiota, by studying the same insect population separately grown on fruit-based or non-fruit artificial diet. AAB were highly prevalent in the gut under both diets (90 and 92% infection rates with fruits and artificial diet respectively). Fluorescent in situ hybridization and recolonization experiments with green fluorescent protein (Gfp)-labelled strains showed AAB capability to massively colonize insect gut. High-throughput sequencing on 16S rRNA gene indicated that the bacterial microbiota of guts fed with the two diets clustered separately. By excluding AAB-related OTUs from the analysis, insect bacterial communities did not cluster separately according to the diet, suggesting that diet-based diversification of the community is primarily reflected on the AAB component of the community. Diet influenced also AAB alpha-diversity, with separate OTU distributions based on diets. High prevalence, localization and massive recolonization, together with AAB clustering behaviour in relation to diet, suggest an AAB role in the D. suzukii gut response to diet modification.


Subject(s)
Bacteria/classification , Bacteria/drug effects , Biota/drug effects , Diet , Drosophila/microbiology , Drosophila/physiology , Animals , Bacteria/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Gastrointestinal Tract/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
7.
Sci Rep ; 5: 15811, 2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26563507

ABSTRACT

Intracellular reproductive manipulators, such as Candidatus Cardinium and Wolbachia are vertically transmitted to progeny but rarely show co-speciation with the host. In sap-feeding insects, plant tissues have been proposed as alternative horizontal routes of interspecific transmission, but experimental evidence is limited. Here we report results from experiments that show that Cardinium is horizontally transmitted between different phloem sap-feeding insect species through plants. Quantitative PCR and in situ hybridization experiments indicated that the leafhopper Scaphoideus titanus releases Cardinium from its salivary glands during feeding on both artificial media and grapevine leaves. Successional time-course feeding experiments with S. titanus initially fed sugar solutions or small areas of grapevine leaves followed by feeding by the phytoplasma vector Macrosteles quadripunctulatus or the grapevine feeder Empoasca vitis revealed that the symbionts were transmitted to both species. Explaining interspecific horizontal transmission through plants improves our understanding of how symbionts spread, their lifestyle and the symbiont-host intermixed evolutionary pattern.


Subject(s)
Bacteroidetes/physiology , Hemiptera/microbiology , Hemiptera/physiology , Plants/microbiology , Plants/parasitology , Animals , Bacteroidetes/classification , Bacteroidetes/genetics , Geography , Hemiptera/genetics , Host-Pathogen Interactions , In Situ Hybridization , In Situ Hybridization, Fluorescence , Insect Vectors/microbiology , Insect Vectors/physiology , Intracellular Space/microbiology , Intracellular Space/parasitology , Italy , Microscopy, Electron, Transmission , Phylogeny , Plant Diseases/microbiology , Plant Diseases/parasitology , Plant Leaves/microbiology , Plant Leaves/parasitology , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction , Salivary Glands/microbiology , Symbiosis , Vitis/microbiology , Vitis/parasitology
8.
J Microbiol Methods ; 119: 110-25, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26476138

ABSTRACT

Among the animals of the Kingdom Animalia, insects are unparalleled for their widespread diffusion, diversity and number of occupied ecological niches. In recent years they have raised researcher interest not only because of their importance as human and agricultural pests, disease vectors and as useful breeding species (e.g. honeybee and silkworm), but also because of their suitability as animal models. It is now fully recognized that microorganisms form symbiotic relationships with insects, influencing their survival, fitness, development, mating habits and the immune system and other aspects of the biology and ecology of the insect host. Thus, any research aimed at deepening the knowledge of any given insect species (perhaps species of applied interest or species emerging as novel pests or vectors) must consider the characterization of the associated microbiome. The present review critically examines the microbiology and molecular ecology techniques that can be applied to the taxonomical and functional analysis of the microbiome of non-model insects. Our goal is to provide an overview of current approaches and methods addressing the ecology and functions of microorganisms and microbiomes associated with insects. Our focus is on operational details, aiming to provide a concise guide to currently available advanced techniques, in an effort to extend insect microbiome research beyond simple descriptions of microbial communities.


Subject(s)
Bacteria/isolation & purification , Insecta/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Biodiversity , Humans , Symbiosis
9.
Biomed Res Int ; 2013: 479893, 2013.
Article in English | MEDLINE | ID: mdl-24073406

ABSTRACT

Paenibacillus larvae is the causative agent of American foulbrood (AFB), a virulent disease of honeybee (Apis mellifera) larvae. In Tunisia, AFB has been detected in many beekeeping areas, where it causes important economic losses, but nothing is known about the diversity of the causing agent. Seventy-five isolates of P. larvae, identified by biochemical tests and 16S rRNA gene sequencing, were obtained from fifteen contaminated broods showing typical AFB symptoms, collected in different locations in the northern part of the country. Using BOX-PCR, a distinct profile of P. larvae with respect to related Paenibacillus species was detected which may be useful for its identification. Some P. larvae-specific bands represented novel potential molecular markers for the species. BOX-PCR fingerprints indicated a relatively high intraspecific diversity among the isolates not described previously with several molecular polymorphisms identifying six genotypes on polyacrylamide gel. Polymorphisms were also detected in several biochemical characters (indol production, nitrate reduction, and methyl red and oxidase tests). Contrary to the relatively high intraspecies molecular and phenotypic diversity, the in vivo virulence of three selected P. larvae genotypes did not differ significantly, suggesting that the genotypic/phenotypic differences are neutral or related to ecological aspects other than virulence.


Subject(s)
Bees/microbiology , Genetic Variation , Gram-Positive Bacterial Infections/microbiology , Honey , Paenibacillus/genetics , Paenibacillus/isolation & purification , Animals , Biological Assay , Genotype , Geography , Larva/microbiology , Molecular Sequence Data , Numerical Analysis, Computer-Assisted , Paenibacillus/pathogenicity , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Tunisia , Virulence/genetics
10.
N Biotechnol ; 30(6): 716-22, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-23727340

ABSTRACT

Among pollinators, honeybees are the most important ones and exert the essential key ecosystem service of pollination for many crops, fruit and wild plants. Indeed, several crops are strictly dependent on honeybee pollination. Since few decades, honeybees are facing large-scale losses worldwide, the causes of which are found in the interaction of several biotic and abiotic factors, such as the use of pesticides, the habitat loss, the spread of pathogens and parasites and the occurrence of climate changes. Insect symbionts are emerging as a potential tool to protect beneficial insects, ameliorating the innate immune homeostasis and contributing to the general insect wellbeing. A review about the microbial symbionts associated to honeybees is here presented. The importance of the honeybee microbial commensals for the maintenance and improvement of honeybee health is discussed. Several stressors like infestations of Varroa mites and the use of pesticides can contribute to the occurrence of dysbiosis phenomena, resulting in a perturbation of the microbiocenosis established in the honeybee body.


Subject(s)
Bees/immunology , Bees/microbiology , Immunity, Innate , Microbial Consortia/physiology , Symbiosis/physiology , Animals
11.
BMC Microbiol ; 12 Suppl 1: S4, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22376056

ABSTRACT

BACKGROUND: Bacteria of the genus Asaia have been recently recognized as secondary symbionts of different sugar-feeding insects, including the leafhopper Scaphoideus titanus, vector of Flavescence dorée phytoplasmas. Asaia has been shown to be localized in S. titanus gut, salivary glands and gonoducts and to be maternally transmitted to the progeny by an egg smearing mechanism. It is currently not known whether Asaia in S. titanus is transmitted by additional routes. We performed a study to evaluate if Asaia infection is capable of horizontal transmission via co-feeding and venereal routes. RESULTS: A Gfp-tagged strain of Asaia was provided to S. titanus individuals to trace the transmission pathways of the symbiotic bacterium. Co-feeding trials showed a regular transfer of bacterial cells from donors to recipients, with a peak of frequency after 72 hours of exposure, and with concentrations of the administrated strain growing over time. Venereal transmission experiments were first carried out using infected males paired with uninfected females. In this case, female individuals acquired Gfp-labelled Asaia, with highest infection rates 72-96 hours after mating and with increasing abundance of the tagged symbiont over time. When crosses between infected females and uninfected males were conducted, the occurrence of "female to male" transmission was observed, even though the transfer occurred unevenly. CONCLUSIONS: The data presented demonstrate that the acetic acid bacterial symbiont Asaia is horizontally transmitted among S. titanus individuals both by co-feeding and venereal transmission, providing one of the few direct demonstrations of such a symbiotic transfer in Hemiptera. This study contributes to the understanding of the bacterial ecology in the insect host, and indicates that Asaia evolved multiple pathways for the colonization of S. titanus body.


Subject(s)
Acetobacteraceae/isolation & purification , Hemiptera/microbiology , Acetobacteraceae/classification , Acetobacteraceae/physiology , Animals , Female , Food Microbiology , Genitalia/microbiology , Hemiptera/physiology , Male , Symbiosis
12.
Microb Biotechnol ; 5(3): 307-17, 2012 May.
Article in English | MEDLINE | ID: mdl-22103294

ABSTRACT

Microorganisms establish with their animal hosts close interactions. They are involved in many aspects of the host life, physiology and evolution, including nutrition, reproduction, immune homeostasis, defence and speciation. Thus, the manipulation and the exploitation the microbiota could result in important practical applications for the development of strategies for the management of insect-related problems. This approach, defined as 'Microbial Resource Management' (MRM), has been applied successfully in various environments and ecosystems, as wastewater treatments, prebiotics in humans, anaerobic digestion and so on. MRM foresees the proper management of the microbial resource present in a given ecosystem in order to solve practical problems through the use of microorganisms. In this review we present an interesting field for application for MRM concept, i.e. the microbial communities associated with arthropods and nematodes. Several examples related to this field of applications are presented. Insect microbiota can be manipulated: (i) to control insect pests for agriculture; (ii) to control pathogens transmitted by insects to humans, animals and plants; (iii) to protect beneficial insects from diseases and stresses. Besides, we prospect further studies aimed to verify, improve and apply MRM by using the insect-symbiont ecosystem as a model.


Subject(s)
Bacterial Physiological Phenomena , Insecta/microbiology , Symbiosis , Animals , Insecta/physiology , Pest Control, Biological
13.
Environ Microbiol ; 13(4): 911-21, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21208355

ABSTRACT

While symbiosis between bacteria and insects has been thoroughly investigated in the last two decades, investments on the study of yeasts associated with insects have been limited. Insect-associated yeasts are placed on different branches of the phylogenetic tree of fungi, indicating that these associations evolved independently on several occasions. Isolation of yeasts is frequently reported from insect habitats, and in some cases yeasts have been detected in the insect gut and in other organs/tissues. Here we show that the yeast Wickerhamomyces anomalus, previously known as Pichia anomala, is stably associated with the mosquito Anopheles stephensi, a main vector of malaria in Asia. Wickerhamomyces anomalus colonized pre-adult stages (larvae L(1)-L(4) and pupae) and adults of different sex and age and could be isolated in pure culture. By a combination of transmission electron microscopy and fluorescent in situ hybridization techniques, W. anomalus was shown to localize in the midgut and in both the male and female reproductive systems, suggesting multiple transmission patterns.


Subject(s)
Anopheles/microbiology , Digestive System/microbiology , Genitalia, Female/microbiology , Genitalia, Male/microbiology , Pichia/growth & development , Animals , Asia , DNA, Fungal/genetics , Female , In Situ Hybridization, Fluorescence , Larva/microbiology , Male , Microscopy, Electron, Transmission , Pichia/genetics , Pichia/isolation & purification , Polymerase Chain Reaction , Symbiosis
14.
Appl Environ Microbiol ; 77(4): 1423-35, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21183640

ABSTRACT

One emerging disease of grapevine in Europe is Bois noir (BN), a phytoplasmosis caused by "Candidatus Phytoplasma solani" and spread in vineyards by the planthopper Hyalesthes obsoletus (Hemiptera: Cixiidae). Here we present the first full characterization of the bacterial community of this important disease vector collected from BN-contaminated areas in Piedmont, Italy. Length heterogeneity PCR and denaturing gradient gel electrophoresis analysis targeting the 16S rRNA gene revealed the presence of a number of bacteria stably associated with the insect vector. In particular, symbiotic bacteria detected by PCR with high infection rates in adult individuals fell within the "Candidatus Sulcia muelleri" cluster in the Bacteroidetes and in the "Candidatus Purcelliella pentastirinorum" group in the Gammaproteobacteria, both previously identified in different leafhoppers and planthoppers. A high infection rate (81%) was also shown for another symbiont belonging to the Betaproteobacteria, designated the HO1-V symbiont. Because of the low level of 16S rRNA gene identity (80%) with the closest relative, an uncharacterized symbiont of the tick Haemaphysalis longicornis, we propose the new name "Candidatus Vidania fulgoroideae." Other bacterial endosymbionts identified in H. obsoletus were related to the intracellular bacteria Wolbachia pipientis, Rickettsia sp., and "Candidatus Cardinium hertigii." Fluorescent in situ hybridization coupled with confocal laser scanning microscopy and transmission electron microscopy showed that these bacteria are localized in the gut, testicles, and oocytes. As "Ca. Sulcia" is usually reported in association with other symbiotic bacteria, we propose that in H. obsoletus, it may occur in a bipartite or even tripartite relationship between "Ca. Sulcia" and "Ca. Purcelliella," "Ca. Vidania," or both.


Subject(s)
Hemiptera/microbiology , Insect Vectors/microbiology , Phytoplasma/pathogenicity , Plant Diseases/microbiology , Symbiosis , Vitis/microbiology , Animals , Bacteroidetes/classification , Bacteroidetes/isolation & purification , Base Sequence , Betaproteobacteria/classification , Betaproteobacteria/isolation & purification , Denaturing Gradient Gel Electrophoresis , Gammaproteobacteria/classification , Gammaproteobacteria/isolation & purification , In Situ Hybridization, Fluorescence , Italy , Microbial Consortia , Molecular Sequence Data , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Rickettsia/classification , Rickettsia/isolation & purification , Sequence Analysis, DNA
15.
Environ Microbiol ; 13(2): 414-26, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21040355

ABSTRACT

'Candidatus Liberibacter spp.' cause serious plant diseases. 'Candidatus Liberibacter asiaticus', 'Ca. L. americanus' and 'Ca. L. africanus' are the aetiological agents of citrus greening (Huanglongbing) in Asia, America and Africa. 'Candidatus Liberibacter solanacearum' causes diseases in Solanaceae in America and New Zealand. All four species are vectored by psyllid insects of different genera. Here, we show that the pear psyllid pest Cacopsylla pyri (L.) hosts a novel liberibacter species that we named 'Ca. Liberibacter europaeus'. It can bloom to high titres in the psyllid host, with more than 10(9) 16S rRNA gene copies per individual. Fluorescent in situ hybridization experiments showed that 'Ca. L. europaeus' is present in the host midgut lumen, salivary glands and Malpighian tubules. 'Candidatus L. europaeus' has a relatively high prevalence (> 51%) in C. pyri from different areas in the Piedmont and Valle d'Aosta regions in Italy and can be transmitted to pear plants in experimental transmission trials. However, even though high titres of the bacterium (more than 10(8) 16S rRNA gene copies g(-1) of pear plant tissue) could be detected, in the pear tissues no specific disease symptoms could be observed in the infected plants over a 6-month period. Despite liberibacters representing potential quarantine organisms, 'Ca. L. europaeus', first described in Italy and Europe, apparently behaves as an endophyte rather than a pathogen.


Subject(s)
Hemiptera/microbiology , Plant Diseases/microbiology , Rhizobiaceae/classification , Animals , DNA, Ribosomal Spacer/genetics , Molecular Sequence Data , Phylogeny , Pyrus/microbiology , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Rhizobiaceae/genetics , Rhizobiaceae/growth & development , Sequence Analysis, DNA
16.
Environ Microbiol ; 11(12): 3252-64, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19735280

ABSTRACT

Bacterial symbionts of insects have been proposed for blocking transmission of vector-borne pathogens. However, in many vector models the ecology of symbionts and their capability of cross-colonizing different hosts, an important feature in the symbiotic control approach, is poorly known. Here we show that the acetic acid bacterium Asaia, previously found in the malaria mosquito vector Anopheles stephensi, is also present in, and capable of cross-colonizing other sugar-feeding insects of phylogenetically distant genera and orders. PCR, real-time PCR and in situ hybridization experiments showed Asaia in the body of the mosquito Aedes aegypti and the leafhopper Scaphoideus titanus, vectors of human viruses and a grapevine phytoplasma respectively. Cross-colonization patterns of the body of Ae. aegypti, An. stephensi and S. titanus have been documented with Asaia strains isolated from An. stephensi or Ae. aegypti, and labelled with plasmid- or chromosome-encoded fluorescent proteins (Gfp and DsRed respectively). Fluorescence and confocal microscopy showed that Asaia, administered with the sugar meal, efficiently colonized guts, male and female reproductive systems and the salivary glands. The ability in cross-colonizing insects of phylogenetically distant orders indicated that Asaia adopts body invasion mechanisms independent from host-specific biological characteristics. This versatility is an important property for the development of symbiont-based control of different vector-borne diseases.


Subject(s)
Acetobacteraceae/isolation & purification , Insecta/microbiology , Symbiosis , Acetic Acid/metabolism , Acetobacteraceae/genetics , Acetobacteraceae/metabolism , Acetobacteraceae/ultrastructure , Animals , Base Sequence , Culicidae/microbiology , Disease Vectors , Hemiptera/microbiology , Molecular Sequence Data
17.
Proc Biol Sci ; 276(1666): 2485-91, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19364731

ABSTRACT

Environmental factors can induce significant epigenetic changes that may also be inherited by future generations. The maternally inherited symbiont of arthropods Wolbachia pipientis is an excellent candidate as an 'environmental' factor promoting trans-generational epigenetic changes: by establishing intimate relationships with germ-line cells, epigenetic effects of Wolbachia symbiosis would be manifested as a 'maternal effect', in which infection of the mother modulates the offspring phenotype. In the leafhopper Zyginidia pullula, Wolbachia feminizes genetic males, leaving them as intersexes. With the exception of male chitinous structures that are present in the last abdominal segment, feminized males display phenotypic features that are typical of females. These include ovaries that range from a typical histological architecture to an altered structure. Methylation-sensitive random amplification of polymorphic DNA profiles show that they possess a female genomic imprint. On the other hand, some rare feminized males bear testes instead of ovaries. These specimens possess a Wolbachia density approximately four orders of magnitude lower than feminized males with ovaries and maintain a male genome-methylation pattern. Our results indicate that Wolbachia infection disrupts male imprinting, which dramatically influences the expression of genes involved in sex differentiation and development, and the alteration occurs only if Wolbachia exceeds a density threshold. Thus, a new Wolbachia's role as an environmental evolutionary force, inducing epigenetic trans-generational changes, should now be considered.


Subject(s)
Biological Evolution , Genome, Insect , Genomic Imprinting , Hemiptera/microbiology , Wolbachia/physiology , Animals , DNA Methylation , Epigenesis, Genetic , Female , Hemiptera/anatomy & histology , Male , Sex Determination Processes , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...