Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 10: 1066651, 2022.
Article in English | MEDLINE | ID: mdl-36532595

ABSTRACT

With growing concerns about environmental issues and sustainable economy, bioproduction of chemicals utilizing microbial cell factories provides an eco-friendly alternative to current petro-based processes. Creating high-performance strains (with high titer, yield, and productivity) through metabolic engineering strategies is critical for cost-competitive production. Commonly, it is inevitable to fine-tuning or rewire the endogenous or heterologous pathways in such processes. As an important pathway involved in the synthesis of many kinds of chemicals, the potential of the glyoxylate cycle in metabolic engineering has been studied extensively these years. Here, we review the metabolic regulation of the glyoxylate cycle and summarize recent achievements in microbial production of chemicals through tuning of the glyoxylate cycle, with a focus on studies implemented in model microorganisms. Also, future prospects for bioproduction of glyoxylate cycle-related chemicals are discussed.

2.
Toxins (Basel) ; 14(11)2022 11 11.
Article in English | MEDLINE | ID: mdl-36422962

ABSTRACT

Aspergillus flavus and the produced aflatoxins cause great hazards to food security and human health across all countries. The control of A. flavus and aflatoxins in grains during storage is of great significance to humans. In the current study, bacteria strain YM6 isolated from sea sediment was demonstrated effective in controlling A. flavus by the production of anti-fungal volatiles. According to morphological characteristics and phylogenetic analysis, strain YM6 was identified as Pseudomonas stutzeri. YM6 can produce abundant volatile compounds which could inhibit mycelial growth and conidial germination of A. flavus. Moreover, it greatly prevented fungal infection and aflatoxin production on maize and peanuts during storage. The inhibition rate was 100%. Scanning electron microscopy further supported that the volatiles could destroy the cell structure of A. flavus and prevent conidia germination on the grain surface. Gas chromatography/mass spectrometry revealed that dimethyl trisulfide (DMTS) with a relative abundance of 13% is the most abundant fraction in the volatiles from strain YM6. The minimal inhibitory concentration of DMTS to A. flavus conidia is 200 µL/L (compound volume/airspace volume). Thus, we concluded that Pseudomonas stutzeri YM6 and the produced DMTS showed great inhibition to A. flavus, which could be considered as effective biocontrol agents in further application.


Subject(s)
Aflatoxins , Pseudomonas stutzeri , Humans , Aspergillus flavus/metabolism , Aflatoxins/analysis , Phylogeny
3.
3 Biotech ; 11(9): 405, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34471588

ABSTRACT

Corynebacterium glutamicum has been widely used for bulk and fine chemicals fermentation these years. In this study, we developed a defined medium for this bacteria based on the widely used CGXII minimal medium. We evaluated the effects of different components in CGXII on cell growth of C. glutamicum ATCC 13032 and improved the medium through single-factor experiment and central composite design (CCD). Urea, K2HPO4 and MgSO4 were found to be significant factors. 7 out of the total 15 components were modified. (NH4)2SO4, KH2PO4, and protocatechuic acid were eliminated. Amounts of urea and MgSO4 were increased, and concentrations of biotin and glucose were reduced. The resulting R2 medium was proved to be more suitable for cell growth, plasmid amplification and protein production than the original recipe. Remarkably, cell biomass accumulation in R2 increased by 54.36% than CGXII. Transcriptome analysis revealed alteration of carbon metabolism, cation transport and energy synthesis, which might be beneficial for cell growth in R2. Considering the high nitrogen content and availability of urea, the new medium is simplified and cost effective, which holds attractive potential for future study. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02959-6.

4.
BMC Plant Biol ; 20(1): 294, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32600265

ABSTRACT

BACKGROUND: Catechins, caffeine, and theanine as three important metabolites in the tea leaves play essential roles in the formation of specific taste and shows potential health benefits to humans. However, the knowledge on the dynamic changes of these metabolites content over seasons, as well as the candidate regulatory factors, remains largely undetermined. RESULTS: An integrated transcriptomic and metabolomic approach was used to analyze the dynamic changes of three mainly metabolites including catechins, caffeine, and theanine, and to explore the potential influencing factors associated with these dynamic changes over the course of seasons. We found that the catechins abundance was higher in Summer than that in Spring and Autumn, and the theanine abundance was significantly higher in Spring than that in Summer and Autumn, whereas caffeine exhibited no significant changes over three seasons. Transcriptomics analysis suggested that genes in photosynthesis pathway were significantly down-regulated which might in linkage to the formation of different phenotypes and metabolites content in the tea leaves of varied seasons. Fifty-six copies of nine genes in catechins biosynthesis, 30 copies of 10 genes in caffeine biosynthesis, and 12 copies of six genes in theanine biosynthesis were detected. The correlative analysis further presented that eight genes can be regulated by transcription factors, and highly correlated with the changes of metabolites abundance in tea-leaves. CONCLUSION: Sunshine intensity as a key factor can affect photosynthesis of tea plants, further affect the expression of major Transcription factors (TFs) and structural genes in, and finally resulted in the various amounts of catechins, caffeine and theaine in tea-leaves over three seasons. These findings provide new insights into abundance and influencing factors of metabolites of tea in different seasons, and further our understanding in the formation of flavor, nutrition and medicinal function.


Subject(s)
Caffeine/biosynthesis , Camellia sinensis/metabolism , Catechin/biosynthesis , Glutamates/biosynthesis , Gene Expression , Metabolomics , Phenotype , Plant Leaves/metabolism , Seasons , Transcription Factors/metabolism , Transcriptome
5.
Front Microbiol ; 10: 1419, 2019.
Article in English | MEDLINE | ID: mdl-31293550

ABSTRACT

Controlling aflatoxigenic Aspergillus flavus and aflatoxins (AFs) in grains and food during storage is a great challenge to humans worldwide. Alcaligenes faecalis N1-4 isolated from tea rhizosphere soil can produce abundant antifungal volatiles, and greatly inhibited the growth of A. flavus in un-contacted face-to-face dual culture testing. Gas chromatography tandem mass spectrometry revealed that dimethyl disulfide (DMDS) and methyl isovalerate (MI) were two abundant compounds in the volatile profiles of N1-4. DMDS was found to have the highest relative abundance (69.90%, to the total peak area) in N1-4, which prevented the conidia germination and mycelial growth of A. flavus at 50 and 100 µL/L, respectively. The effective concentration for MI against A. flavus is 200 µL/L. Additionally, Real-time quantitative PCR analysis proved that the expression of 12 important genes in aflatoxin biosynthesis pathway was reduced by these volatiles, and eight genes were down regulated by 4.39 to 32.25-folds compared to control treatment with significant differences. And the A. flavus infection and AFs contamination in groundnut, maize, rice and soybean of high water activity were completely inhibited by volatiles from N1-4 in storage. Scanning electron microscope further proved that A. flavus conidia inoculated on peanuts surface were severely damaged by volatiles from N1-4. Furthermore, strain N1-4 showed broad and antifungal activity to other six important plant pathogens including Fusarium graminearum, F. equiseti, Alternaria alternata, Botrytis cinerea, Aspergillus niger, and Colletotrichum graminicola. Thus, A. faecalis N1-4 and volatile DMDS and MI may have potential to be used as biocontrol agents to control A. flavus and AFs during storage.

6.
Toxins (Basel) ; 8(10)2016 09 24.
Article in English | MEDLINE | ID: mdl-27669304

ABSTRACT

Globally, the trichothecene mycotoxins deoxynivalenol (DON) and nivalenol (NIV) are among the most widely distributed mycotoxins that contaminate small grain cereals. In this study, a bacterial consortium, PGC-3, with de-epoxydation activity was isolated from soil by an in situ soil enrichment method. Screening of 14 soil samples that were sprayed with DON revealed that 4 samples were able to biotransform DON into de-epoxydized DON (dE-DON). Among these, the PGC-3 consortium showed the highest and most stable activity to biotransform DON into dE-DON and NIV into dE-NIV. PGC-3 exhibited de-epoxydation activity at a wide range of pH (5-10) and temperatures (20-37 °C) values under aerobic conditions. Sequential subculturing with a continued exposure to DON substantially reduced the microbial population diversity of this consortium. Analyses of the 16S rDNA sequences indicated that PGC-3 comprised 10 bacterial genera. Among these, one species, Desulfitobacterium, showed a steady increase in relative abundance, from 0.03% to 1.55% (a 52-fold increase), as higher concentrations of DON were used in the subculture media, from 0 to 500 µg/mL. This study establishes the foundation to further develop bioactive agents that can detoxify trichothecene mycotoxins in cereals and enables for the characterization of detoxifying genes and their regulation.


Subject(s)
Soil Microbiology , Trichothecenes/metabolism , Aerobiosis , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Epoxy Compounds/metabolism
7.
Front Microbiol ; 6: 1091, 2015.
Article in English | MEDLINE | ID: mdl-26500631

ABSTRACT

Aflatoxigenic Aspergillus fungi and associated aflatoxins are ubiquitous in the production and storage of food/feed commodities. Controlling these microbes is a challenge. In this study, the Shewanella algae strain YM8 was found to produce volatiles that have strong antifungal activity against Aspergillus pathogens. Gas chromatography-mass spectrometry profiling revealed 15 volatile organic compounds (VOCs) emitted from YM8, of which dimethyl trisulfide was the most abundant. We obtained authentic reference standards for six of the VOCs; these all significantly reduced mycelial growth and conidial germination in Aspergillus; dimethyl trisulfide and 2,4-bis(1,1-dimethylethyl)-phenol showed the strongest inhibitory activity. YM8 completely inhibited Aspergillus growth and aflatoxin biosynthesis in maize and peanut samples stored at different water activity levels, and scanning electron microscopy revealed severely damaged conidia and a complete lack of mycelium development and conidiogenesis. YM8 also completely inhibited the growth of eight other agronomically important species of phytopathogenic fungi: A. parasiticus, A. niger, Alternaria alternate, Botrytis cinerea, Fusarium graminearum, Fusarium oxysporum, Monilinia fructicola, and Sclerotinia sclerotiorum. This study demonstrates the susceptibility of Aspergillus and other fungi to VOCs from marine bacteria and indicates a new strategy for effectively controlling these pathogens and the associated mycotoxin production during storage and possibly in the field.

8.
PLoS One ; 10(2): e0116871, 2015.
Article in English | MEDLINE | ID: mdl-25689464

ABSTRACT

Controlling toxigenic Fusarium graminearum (FG) is challenging. A bacterial strain (S76-3, identified as Bacillus amyloliquefaciens) that was isolated from diseased wheat spikes in the field displayed strong antifungal activity against FG. Reverse-phase high performance liquid chromatography and electrospray ionization mass spectrometry analyses revealed that S76-3 produced three classes of cyclic lipopeptides including iturin, plipastatin and surfactin. Each class consisted of several different molecules. The iturin and plipastatin fractions strongly inhibited FG; the surfactin fractions did not. The most abundant compound that had antagonistic activity from the iturin fraction was iturin A (m/z 1043.35); the most abundant active compound from the plipastatin fraction was plipastatin A (m/z 1463.90). These compounds were analyzed with collision-induced dissociation mass spectrometry. The two purified compounds displayed strong fungicidal activity, completely killing conidial spores at the minimal inhibitory concentration range of 50 µg/ml (iturin A) and 100 µg/ml (plipastatin A). Optical and fluorescence microscopy analyses revealed severe morphological changes in conidia and substantial distortions in FG hyphae treated with iturin A or plipastatin A. Iturin A caused leakage and/or inactivation of FG cellular contents and plipastatin A caused vacuolation. Time-lapse imaging of dynamic antagonistic processes illustrated that iturin A caused distortion and conglobation along hyphae and inhibited branch formation and growth, while plipastatin A caused conglobation in young hyphae and branch tips. Transmission electron microscopy analyses demonstrated that the cell walls of conidia and hyphae of iturin A and plipastatin A treated FG had large gaps and that their plasma membranes were severely damaged and separated from cell walls.


Subject(s)
Antibiosis , Bacillus/metabolism , Fatty Acids/metabolism , Fusarium/metabolism , Oligopeptides/metabolism , Peptides, Cyclic/metabolism , Triticum/microbiology , Amino Acid Sequence , Fatty Acids/chemistry , Fatty Acids/pharmacology , Fusarium/drug effects , Fusarium/ultrastructure , Microbial Sensitivity Tests , Oligopeptides/chemistry , Oligopeptides/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Plant Diseases/microbiology
9.
Fungal Genet Biol ; 63: 24-41, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24291007

ABSTRACT

Trehalose 6-phosphate synthase (TPS1) and trehalose 6-phosphate phosphatase (TPS2) are required for trehalose biosynthesis in yeast and filamentous fungi, including Fusarium graminearum. Three null mutants Δtps1, Δtps2 and Δtps1-Δtps2, each carrying either a single deletion of TPS1 or TPS2 or a double deletion of TPS1-TPS2, were generated from a toxigenic F. graminearum strain and were not able to synthesize trehalose. In contrast to its reported function in yeasts and filamentous fungi, TPS1 appeared dispensable for development and virulence. However, deletion of TPS2 abolished sporulation and sexual reproduction; it also altered cell polarity and ultrastructure of the cell wall in association with reduced chitin biosynthesis. The cell polarity alteration was exhibited as reduced apical growth and increased lateral growth and branching with increased hyphal and cell wall widths. Moreover, the TPS2-deficient strain displayed abnormal septum development and nucleus distribution in its conidia and vegetative hyphae. The Δtps2 mutant also had 62% lower mycelial growth on potato dextrose agar and 99% lower virulence on wheat compared with the wild-type. The Δtps1, Δtps2 and Δtps1-Δtps2 mutants synthesized over 3.08-, 7.09- and 2.47-fold less mycotoxins, respectively, on rice culture compared with the wild-type. Comparative transcriptome analysis revealed that the Δtps1, Δtps2 and Δtps1-Δtps2 mutants had 486, 1885 and 146 genotype-specific genes, respectively, with significantly changed expression profiles compared with the wild-type. Further dissection of this pathway will provide new insights into regulation of fungal development, virulence and trichothecene biosynthesis.


Subject(s)
Fungal Proteins/genetics , Fusarium/pathogenicity , Glucosyltransferases/metabolism , Mycotoxins/biosynthesis , Phosphoric Monoester Hydrolases/metabolism , Trehalose/biosynthesis , Cell Wall/genetics , Cell Wall/metabolism , Fungal Proteins/metabolism , Fusarium/genetics , Fusarium/metabolism , Gene Expression Regulation, Fungal , Glucosyltransferases/genetics , Hyphae/genetics , Hyphae/metabolism , Hyphae/pathogenicity , Mutation , Mycotoxins/genetics , Phosphoric Monoester Hydrolases/genetics , Spores, Fungal/genetics , Spores, Fungal/metabolism , Trehalose/genetics , Triticum/microbiology
10.
Anal Chem ; 85(22): 10992-9, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24128348

ABSTRACT

A sensitive and specific analytical method to detect ubiquitous aflatoxigenic Aspergillus pathogens is essential for monitoring and controlling aflatoxins. Four highly reactive chicken single-chain variable fragments (scFvs) against soluble cell wall proteins (SCWPs) from Aspergillus flavus were isolated by phage display. The scFv antibody AfSA4 displayed the highest activity toward both A. flavus and A. parasiticus and specifically recognized a surface target of their cell walls as revealed by immunofluorescence localization. Molecular modeling revealed a unique compact motif on the antibody surface mainly involving L-CDR2 and H-CDR3. As measured by surface plasmon resonance, AfSA4 fused to alkaline phosphatase had a higher binding capability and 6-fold higher affinity compared with AfSA4 alone. Immunoblot analyses showed that the fusion had good binding capacity to SCWP components from the two fungal species. Direct sandwich enzyme-linked immunosorbent assays with mouse antiaspergillus monoclonal antibody mAb2A8 generated in parallel as a capture antibody revealed that the detection limit of the two fungi was as low as 10(-3) µg/mL, 1000-fold more sensitive than that reported previously (1 µg/mL). The fusion protein was able to detect fungal concentrations below 1 µg/g of maize and peanut grains in both artificially and naturally contaminated samples, with at least 10-fold more sensitivity than that reported (10 µg/g) thus far. Thus, the fusion can be applied in rapid, simple, and specific diagnosis of Aspergillus contamination in field and stored food/feed commodities.


Subject(s)
Alkaline Phosphatase/immunology , Antibodies, Monoclonal/immunology , Aspergillosis/diagnosis , Aspergillus/pathogenicity , Food Contamination/analysis , Single-Chain Antibodies/immunology , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Amino Acid Sequence , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Arachis/chemistry , Arachis/microbiology , Aspergillosis/immunology , Aspergillosis/microbiology , Chickens , Enzyme-Linked Immunosorbent Assay , Female , Fluorescent Antibody Technique , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Peptide Library , Protein Conformation , Sequence Homology, Amino Acid , Single-Chain Antibodies/genetics , Single-Chain Antibodies/metabolism , Zea mays/chemistry , Zea mays/microbiology
11.
Fungal Genet Biol ; 54: 60-70, 2013 May.
Article in English | MEDLINE | ID: mdl-23507542

ABSTRACT

Type II myosin is required for cytokinesis/septation in yeast and filamentous fungi, including Fusarium graminearum, a prevalent cause of Fusarium head blight in China. A type II myosin gene from the Chinese F. graminearum strain 5035, isolated from infected wheat spikes, was identified by screening a mutant library generated by restriction enzyme-mediated integration. Disruption of the Myo2 gene reduced mycelial growth by 50% and conidiation by 76-fold, and abolished sexual reproduction on wheat kernels. The Δmyo2 mutants also had a 97% decrease in their pathogenicity on wheat, and mycotoxin production fell to just 3.4% of the normal level. The distribution of nuclei and septa was abnormal in the mutants, and the septal ultrastructure appeared disorganized. Time-lapse imaging of septation provided direct evidence that Myo2 is required for septum initiation and formation, and revealed the dynamic behavior of GFP-tagged Myo2 during hyphal and macroconidia development, particularly in the delimiting septum of phialides and macroconidial spores. Microarray analysis identified many genes with altered expression profiles in the Δmyo2 mutant, indicating that Myo2 is required for several F. graminearum developmental processes and biological activities.


Subject(s)
Fusarium/metabolism , Hyphae/genetics , Myosin Type II/genetics , Triticum/genetics , China , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fusarium/growth & development , Fusarium/pathogenicity , Gene Expression Regulation, Fungal , Hyphae/growth & development , Hyphae/pathogenicity , Microarray Analysis , Mutation , Mycotoxins/biosynthesis , Myosin Type II/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Spores, Fungal/genetics , Spores, Fungal/growth & development , Spores, Fungal/pathogenicity , Triticum/growth & development , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...