Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 11(7): uhae148, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988616

ABSTRACT

Walnut anthracnose (Colletotrichum gloeosporioides) reduces walnut yield and quality and seriously threatens the healthy development of the walnut industry. WRKY transcription factors (TFs) are crucial regulatory factors involved in plant-pathogen interactions. Our previous transcriptome analysis results indicate that JrWRKY4 responds to infection by C. gloeosporioides, but its specific regulatory network and disease resistance mechanism are still unclear. Herein, the characteristics of JrWRKY4 as a transcription activator located in the nucleus were first identified. Gain-of-function and loss-of-function analyses showed that JrWRKY4 could enhance walnut resistance against C. gloeosporioides. A series of molecular experiments showed that JrWRKY4 directly interacted with the promoter region of JrSTH2L and positively regulated its expression. In addition, JrWRKY4 interacted with JrVQ4 to form the protein complex, which inhibited JrWRKY4 for the activation of JrSTH2L. Notably, a MYB TF JrPHL8 interacting with the JrWRKY4 promoter has also been identified, which directly bound to the MBS element in the promoter of JrWRKY4 and induced its activity. Our study elucidated a novel mechanism of the JrPHL8-JrWRKY4-JrSTH2L in regulating walnut resistance to anthracnose. This mechanism improves our understanding of the molecular mechanism of WRKY TF mediated resistance to anthracnose in walnut, which provides new insights for molecular breeding of disease-resistant walnuts in the future.

2.
Front Microbiol ; 14: 1137590, 2023.
Article in English | MEDLINE | ID: mdl-36998393

ABSTRACT

The intercropping of grass in orchards has beneficial effects on soil properties and soil microbial communities and is an important soil management measure for improving orchard productivity and land-use efficiency. However, few studies have explored the effects of grass intercropping on rhizosphere microorganisms in walnut orchards. In this study, we explored the microbial communities of clear tillage (CT), walnut/ryegrass (Lolium perenne L.) (Lp), and walnut/hairy vetch (Vicia villosa Roth.) (Vv) intercropping system using MiSeq sequencing and metagenomic sequencing. The results revealed that the composition and structure of the soil bacterial community changed significantly with walnut/Vv intercropping compared to CT and walnut/Lp intercropping. Moreover, the walnut/hairy vetch intercropping system had the most complex connections between bacterial taxa. In addition, we found that the soil microorganisms of walnut/Vv intercropping had a higher potential for nitrogen cycling and carbohydrate metabolism, which may be related to the functions of Burkholderia, Rhodopseudomonas, Pseudomonas, Agrobacterium, Paraburkholderia, and Flavobacterium. Overall, this study provided a theoretical basis for understanding the microbial communities associated with grass intercropping in walnut orchards, providing better guidance for the management of walnut orchards.

SELECTION OF CITATIONS
SEARCH DETAIL
...