Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 409
Filter
1.
Ther Adv Hematol ; 15: 20406207241251602, 2024.
Article in English | MEDLINE | ID: mdl-38832237

ABSTRACT

Background: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematological cancer. Due to its low incidence, researchers struggle to gather sufficient prospective data to inform clinical treatment. Objectives: We sought to summarize the clinical characteristics and current treatment methods of BPDCN and provide more specific guidance on treatment options. Design: A systematic literature review using data from 74 Chinese BPDCN patients. Date resources and methods: We retrospectively analyzed the clinical manifestations, treatment response, survival outcomes, and prognostic factors of six BPDCN patients treated at the First Affiliated Hospital of Zhengzhou University and 68 patients described in 28 articles published in the China Knowledge Network database since 2019. Results: In Chinese patients, the disease occurred with a male-to-female ratio of 2.52 and a median age of onset of 50 years in adults and 10 years in pediatric patients. Immunohistochemical analysis revealed distinctive immune phenotypes of BPDCN cells, characterized by high expression levels of CD4, CD56, CD123, and HLA-DR, while showing minimal to no expression of myeloperoxidase (MPO), CD20, and CD79a. There was no significant difference in the initial complete remission (CR) rate, relapse rate, and the overall survival (OS) time of patients receiving acute myeloid leukemia-like, acute lymphocytic leukemia-like, or non-Hodgkin's lymphoma-like chemotherapy regimens. Univariate analysis identified CD3 expression, male gender, and central nervous system infiltration as hazardous factors. In multivariate analysis, age proved to be an independent prognostic indicator, indicating better prognosis and longer OS time in younger patients. Notably, hematopoietic stem cell transplantation (HSCT) emerged as a significant factor in improving the survival outcomes for individuals diagnosed with BPDCN. However, further investigation is needed to explore the role of HSCT and the best timing for its implementation in pediatric BPDCN patients. Conclusion: Administering HSCT during the initial CR state following inductive chemotherapy might extend the OS and improve the prognosis of patients with BPDCN.


Systematic literature review of 74 BPDCN patients Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare, aggressive neoplasm that derives from the precursors of plasmacytoid dendritic cell (pDC), accounting for 0.44% of hematological malignancy. Although CD123 targeted therapy has been implemented in the treatment of BPDCN, but a unique complication, capillary leak syndrome presents a therapeutic challenge, and retrospective analysis of conventional chemotherapy regimens is of irreplaceable importance for patients cannot tolerate CD123 targeted therapy. For the first time, we conduced retrospective analysis of large-scale clinical cases based on Chinese patients, and found that age and hematopoietic stem cell transplantation (HSCT) were two independent prognostic factors of BPDCN. In conclusion, younger patients had longer overall survival (OS) time and better prognosis. Combining HSCT in the initial complete remission state significantly prolonged the OS time and improved survival outcomes of BPDCN patients.

2.
Article in English | MEDLINE | ID: mdl-38724231

ABSTRACT

BACKGROUND: Sleep fragmentation is a persistent problem throughout the course of Parkinson's disease (PD). However, the related neurophysiological patterns and the underlying mechanisms remained unclear. METHOD: We recorded subthalamic nucleus (STN) local field potentials (LFPs) using deep brain stimulation (DBS) with real-time wireless recording capacity from 13 patients with PD undergoing a one-night polysomnography recording, 1 month after DBS surgery before initial programming and when the patients were off-medication. The STN LFP features that characterised different sleep stages, correlated with arousal and sleep fragmentation index, and preceded stage transitions during N2 and REM sleep were analysed. RESULTS: Both beta and low gamma oscillations in non-rapid eye movement (NREM) sleep increased with the severity of sleep disturbance (arousal index (ArI)-betaNREM: r=0.9, p=0.0001, sleep fragmentation index (SFI)-betaNREM: r=0.6, p=0.0301; SFI-gammaNREM: r=0.6, p=0.0324). We next examined the low-to-high power ratio (LHPR), which was the power ratio of theta oscillations to beta and low gamma oscillations, and found it to be an indicator of sleep fragmentation (ArI-LHPRNREM: r=-0.8, p=0.0053; ArI-LHPRREM: r=-0.6, p=0.0373; SFI-LHPRNREM: r=-0.7, p=0.0204; SFI-LHPRREM: r=-0.6, p=0.0428). In addition, long beta bursts (>0.25 s) during NREM stage 2 were found preceding the completion of transition to stages with more cortical activities (towards Wake/N1/REM compared with towards N3 (p<0.01)) and negatively correlated with STN spindles, which were detected in STN LFPs with peak frequency distinguishable from long beta bursts (STN spindle: 11.5 Hz, STN long beta bursts: 23.8 Hz), in occupation during NREM sleep (ß=-0.24, p<0.001). CONCLUSION: Features of STN LFPs help explain neurophysiological mechanisms underlying sleep fragmentations in PD, which can inform new intervention for sleep dysfunction. TRIAL REGISTRATION NUMBER: NCT02937727.

4.
Nat Commun ; 15(1): 4481, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802397

ABSTRACT

Retinal degeneration, a leading cause of irreversible low vision and blindness globally, can be partially addressed by retina prostheses which stimulate remaining neurons in the retina. However, existing electrode-based treatments are invasive, posing substantial risks to patients and healthcare providers. Here, we introduce a completely noninvasive ultrasonic retina prosthesis, featuring a customized ultrasound two-dimensional array which allows for simultaneous imaging and stimulation. With synchronous three-dimensional imaging guidance and auto-alignment technology, ultrasonic retina prosthesis can generate programmed ultrasound waves to dynamically and precisely form arbitrary wave patterns on the retina. Neuron responses in the brain's visual center mirrored these patterns, evidencing successful artificial vision creation, which was further corroborated in behavior experiments. Quantitative analysis of the spatial-temporal resolution and field of view demonstrated advanced performance of ultrasonic retina prosthesis and elucidated the biophysical mechanism of retinal stimulation. As a noninvasive blindness prosthesis, ultrasonic retina prosthesis could lead to a more effective, widely acceptable treatment for blind patients. Its real-time imaging-guided stimulation strategy with a single ultrasound array, could also benefit ultrasound neurostimulation in other diseases.


Subject(s)
Blindness , Retina , Visual Prosthesis , Retina/diagnostic imaging , Retina/physiology , Animals , Blindness/therapy , Blindness/physiopathology , Retinal Degeneration/therapy , Retinal Degeneration/diagnostic imaging , Ultrasonic Waves , Humans , Neurons/physiology , Ultrasonography/methods , Vision, Ocular/physiology
5.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791529

ABSTRACT

Over 120 small-molecule kinase inhibitors (SMKIs) have been approved worldwide for treating various diseases, with nearly 70 FDA approvals specifically for cancer treatment, focusing on targets like the epidermal growth factor receptor (EGFR) family. Kinase-targeted strategies encompass monoclonal antibodies and their derivatives, such as nanobodies and peptides, along with innovative approaches like the use of kinase degraders and protein kinase interaction inhibitors, which have recently demonstrated clinical progress and potential in overcoming resistance. Nevertheless, kinase-targeted strategies encounter significant hurdles, including drug resistance, which greatly impacts the clinical benefits for cancer patients, as well as concerning toxicity when combined with immunotherapy, which restricts the full utilization of current treatment modalities. Despite these challenges, the development of kinase inhibitors remains highly promising. The extensively studied tyrosine kinase family has 70% of its targets in various stages of development, while 30% of the kinase family remains inadequately explored. Computational technologies play a vital role in accelerating the development of novel kinase inhibitors and repurposing existing drugs. Recent FDA-approved SMKIs underscore the importance of blood-brain barrier permeability for long-term patient benefits. This review provides a comprehensive summary of recent FDA-approved SMKIs based on their mechanisms of action and targets. We summarize the latest developments in potential new targets and explore emerging kinase inhibition strategies from a clinical perspective. Lastly, we outline current obstacles and future prospects in kinase inhibition.


Subject(s)
Neoplasms , Protein Kinase Inhibitors , Humans , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Neoplasms/drug therapy , Molecular Targeted Therapy/methods , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Animals
6.
Eur Radiol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724767

ABSTRACT

OBJECTIVES: To investigate the association between venous outflow (VO) profiles and outcomes among acute ischemic stroke caused by anterior circulation large vessel occlusion (AIS-LVO) patients who had undergone endovascular treatment (EVT) in the late window of 6-24 h from stroke onset. METHODS: This was a post-hoc analysis of our preceding RESCUE-BT trial, with findings validated in an external cohort. Baseline computed tomographic angiography (CTA) was performed to assess VO using the Cortical Vein Opacification Score (COVES). The primary clinical outcome was functional independence at 90 days (modified Rankin Scale score of 0-2). The adjusted odd ratio (aOR) and confidence interval (CI) were obtained from multivariable logistic regressions. RESULTS: A total of 440 patients were included in the present study. After identifying the cutoff of COVES by marginal effects approach, enrolled patients were divided into the favorable VO group (COVES 4-6) and the poor VO (COVES 0-3) group. Multivariable logistic regression analysis showed that favorable VO (aOR 2.25; 95% CI 1.31-3.86; p = 0.003) was associated with functional independence. Similar results were detected in the external validation cohort. Among those with poor arterial collateralization, favorable VO was still an independent predictor of functional independence (aOR 2.09; 95% CI 1.06-4.10; p = 0.032). CONCLUSION: The robust VO profile indicated by COVES 4-6 could promote the frequency of functional independence among AIS-LVO patients receiving EVT in the late window, and the prognostic value of VO was independent of the arterial collateral status. CLINICAL RELEVANCE STATEMENT: The robust venous outflow profile was a valid predictor for functional independence among AIS-LVO patients receiving EVT in the late window (6-24 h) and the predictive role of venous outflow did not rely on the status of arterial collateral circulation.

7.
Neuropsychol Rehabil ; : 1-20, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593026

ABSTRACT

The weekly calendar planning activity (WCPA) is a performance-based assessment of executive function (EF) via a cognitively-based instrumental activity of daily life (C-IADL). This study aimed to examine the validity of the Chinese version of the WCPA in adults with stroke and to explore the characteristics of cognitive strategy use among the population. Fifty-eight hospitalized patients with stroke aged 26-82 years and 53 controls completed the WCPA, two neuropsychological tests and instrumental activity of daily life (IADL) scale. Participants with stroke were subdivided into a stroke cognitive impaired group (Stroke-CI) and a general stroke group (Stroke-NCI) based on the Montreal Cognitive Assessment. Results showed that the WCPA was able to discriminate between Stroke-CI with controls and the Stroke-NCI group with controls. We found significant limitations in stroke patients' ability to use strategies. Concurrent and ecological validities were demonstrated through correlations between the neuropsychological test scores, IADL and the WCPA performance. This study provides initial evidence for the validity of the Chinese version of the WCPA-10 for adults with stroke and suggests the need to use performance-based tests even in patients with normal cognitive screening test results. The WCPA could provide useful information for strategy-based interventions for adults with stroke.

8.
Int J Biol Macromol ; 266(Pt 2): 131293, 2024 May.
Article in English | MEDLINE | ID: mdl-38565368

ABSTRACT

The major latex proteins/ripening-related proteins are a subfamily of the Bet v 1 protein superfamily and are commonly involved in plant development and responses to various stresses. However, the functions of MLPs in the postharvest cold storage of fruits remain uninvestigated. Herein, we identified 30 MLP genes in the peach (Prunus persica) genome that were clustered into three subgroups. Chromosomal location analysis revealed that the PpMLP genes were unevenly distributed on five of the eight peach chromosomes. Synteny analysis of the MLP genes between peach and seven other plant species (five dicotyledons and two monocotyledons) explored their evolutionary characteristics. Furthermore, the PpMLP promoters contained cis-elements for multiple hormones and stress responses. Gene expression analysis revealed that PpMLPs participated in chilling stress responses. Ectopic expression of PpMLP10 in Arabidopsis improved chilling stress tolerance by decreasing membrane damage and maintaining membrane stability. Additional research confirmed that PpWRKY2 participates in PpMLP10-mediated chilling stress by binding to its promoter. Collectively, these results suggest the role of PpMLP10 in enhancing chilling stress tolerance, which is significant for decreasing chilling injury during the postharvest cold storage of peaches.


Subject(s)
Cold Temperature , Cold-Shock Response , Gene Expression Regulation, Plant , Plant Proteins , Prunus persica , Prunus persica/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Cold-Shock Response/genetics , Promoter Regions, Genetic/genetics , Arabidopsis/genetics , Stress, Physiological/genetics , Phylogeny
9.
Biosensors (Basel) ; 14(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38534234

ABSTRACT

Ultrasound A-scan is an important tool for quantitative assessment of ocular lesions. However, its usability is limited by the difficulty of accurately localizing the ultrasound probe to a lesion of interest. In this study, a transparent LiNbO3 single crystal ultrasound transducer was fabricated, and integrated with a widefield fundus camera to guide the ultrasound local position. The electrical impedance, phase spectrum, pulse-echo performance, and optical transmission spectrum of the ultrasound transducer were validated. The novel fundus camera-guided ultrasound probe was tested for in vivo measurement of rat eyes. Anterior and posterior segments of the rat eye could be unambiguously differentiated with the fundus photography-guided ultrasound measurement. A model eye was also used to verify the imaging performance of the prototype device in the human eye. The prototype shows the potential of being used in the clinic to accurately measure the thickness and echogenicity of ocular lesions in vivo.


Subject(s)
Fluorescein Angiography , Rats , Animals , Humans , Fluorescein Angiography/methods , Ultrasonography
10.
Toxicon ; 242: 107703, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38522586

ABSTRACT

Benthic freshwater cyanobacteria have the potential to produce toxins. Compared with more extensively studied plankton species, little is known about the impact of harmful benthic cyanobacteria on aquatic organisms. As demersal fish are usually in direct contact with benthic cyanobacteria, it is important to understand their interactive effects. This study investigated the physio-chemical responses of two demersal fish (Xenocypris davidi and Crucian carp) after exposure to benthic Oscillatoria (producing cylindrospermopsin, 2 × 106 cells/mL) for 7 days. Interestingly, benthic Oscillatoria had less adverse effects on X. davidi than C. carp. The two demersal fish effectively ingested Oscillatoria, but Oscillatoria cell sheathes could not be fully digested in C. carp intestines and led to growth inhibition. Oscillatoria consumption induced oxidative stress and triggered alterations in detoxification enzyme activities in the X. davidi liver. Superoxide dismutase (SOD) and glutathione reductase (GR) activities significantly increased in the C. carp liver, but catalase (CAT) and detoxification enzymes glutathione S-transferase (GST) and glutathione (GSH) activities were insignificantly changed. This suggested that C. carp may have a relatively weak detoxification capacity for toxic Oscillatoria. Oscillatoria ingestion led to more pronounced liver pathological changes in C. carp, including swelling, deformation, and loss of cytoskeleton structure. Simultaneously, fish consumption of Oscillatoria increased extracellular cylindrospermopsin concentration. These results provide valuable insights into the ecological risks associated with benthic cyanobacteria in aquatic ecosystems.


Subject(s)
Bacterial Toxins , Carps , Cyanobacteria Toxins , Liver , Oxidative Stress , Animals , Liver/pathology , Bacterial Toxins/toxicity , Cyanobacteria , Antioxidants/metabolism , Alkaloids , Oscillatoria , Uracil/analogs & derivatives , Uracil/toxicity , Superoxide Dismutase/metabolism , Marine Toxins/toxicity
11.
Article in English | MEDLINE | ID: mdl-38504588

ABSTRACT

OBJECTIVE: This study focused on investigating the mechanism in which the KDM5D/E2F1/TNNC1 axis affected hepatocellular carcinoma (HCC) development. METHODS: At first, we determined HCC cell proliferation, migration, invasion, and apoptosis, as well as SOD activity, MDA content, and ROS level. ChIP assay was subsequently conducted to examine H3K4me3 modification in the E2F1 promoter region and the binding of E2F1 to the TNNC1 promoter region after KDM5D overexpression. Meanwhile, we performed western blot for testing KDM5D, H3K4me3, and E2F1 expression after KDM5D overexpression in Huh-7 cells. The binding of transcription factor E2F1 to the TNNC1 promoter region was assessed by dual luciferase reporter gene assay. We further observed the tumor growth ability in nude mice transplanted tumor models. RESULTS: Overexpressed KDM5D suppressed HCC proliferation, migration, and invasion, promoted the apoptosis, suppressed SOD activity, elevated MDA content and ROS level, and promoted ferroptosis. KDM5D suppressed H3K4me3 modification in the E2F1 promoter region and suppressed E2F1 expression in HCC cells. Reduced KDM5D, H3K4me3, and E2F1 expression was found after KDM5D overexpression in Huh-7 cells. Overexpressing E2F1 reversed the inhibitory effects of KDM5D on HCC cell proliferative, migratory, and invasive behaviors. KDM5D repressed TNNC1 transcription by inhibiting E2F1 binding to the TNNC1 promoter. In vivo KDM5D overexpression inhibited HCC development via the E2F1/TNNC1 axis. CONCLUSION: KDM5D inhibits E2F1 expression by suppressing H3K4me3 modification in the E2F1 promoter region, which in turn suppresses the binding of E2F1 to the TNNC1 promoter region, thus leading to the inhibition of HCC development.

12.
Neurochem Int ; 176: 105727, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555055

ABSTRACT

Temporal lobe epilepsy (TLE), the most common type of drug-resistant epilepsy, severely affects quality of life. However, the underlying mechanism of TLE remains unclear and deserves further exploration. Sorbs2, a key synaptic regulatory protein, plays an important role in the regulation of synaptic transmission in the mammalian brain. In this study, we aimed to investigate the expression pattern of Sorbs2 in a kainic acid (KA)-induced TLE mouse model and in patients with TLE to further determine whether Sorbs2 is involved in seizure activity and to explore the potential mechanism by which Sorbs2 affects seizures in this TLE mouse model. First, we found that the expression of Sorbs2 was obviously increased in the hippocampus and cortex of a TLE mouse model and in the temporal cortex of TLE patients, indicating an abnormal expression pattern of Sorbs2 in TLE. Importantly, subsequent behavioral analyses and local field potential (LFP) analyses of a TLE mouse model demonstrated that the downregulation of hippocampal Sorbs2 could prolong the latency to spontaneous recurrent seizures (SRSs) and protect against SRSs. We also found that the knockdown of Sorbs2 in the hippocampus could decrease excitatory synaptic transmission in pyramidal neurons (PNs) in the hippocampal CA1 region and reduce the expression levels of the AMPAR subunits GluA1 and GluA2. Thus, we speculated that Sorbs2 may promote epileptogenesis and the development of TLE by affecting AMPAR-mediated excitatory synaptic transmission in PNs in the CA1 region. Therefore, reducing the expression of hippocampal Sorbs2 could restrain epileptogenesis and the development of TLE.


Subject(s)
Epilepsy, Temporal Lobe , RNA-Binding Proteins , Receptors, AMPA , Seizures , Synaptic Transmission , Animals , Female , Humans , Male , Mice , Epilepsy, Temporal Lobe/metabolism , Epilepsy, Temporal Lobe/chemically induced , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Hippocampus/metabolism , Hippocampus/drug effects , Kainic Acid/pharmacology , Kainic Acid/toxicity , Mice, Inbred C57BL , Receptors, AMPA/metabolism , Seizures/metabolism , Seizures/chemically induced , Synaptic Transmission/drug effects , Synaptic Transmission/genetics , Synaptic Transmission/physiology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism
13.
Article in English | MEDLINE | ID: mdl-38485681

ABSTRACT

One of the most fatal and frequent malignancies on the planet is lung cancer. Its occurrence and development are the results of multifactorial and multigenic interactions. In recent years, RNA N6-methyladenosine transferase (FTO) has gained significant attention in the field of oncology. FTO is the first RNA demethylase to be found to control target mRNA demethylation. The growth, proliferation, and metastasis of tumor cells are greatly influenced by FTO. Recent studies have found that imbalanced m6A methylation regulatory proteins can induce disruption of downstream RNA metabolism, strongly affecting tumor development. This paper provides an overview of the relationship between FTO and lung cancer, discussing the mechanisms by which FTO is involved in lung cancer and its potential clinical applications.

14.
Article in English | MEDLINE | ID: mdl-38299557

ABSTRACT

Aims: This research was aimed at investigating the effects of hypoxia inducible factor-1 alpha (HIF-1α)-mediated DNA methylation enzymes (ten-eleven translocase-2 [TET2] and DNA methyltransferase-3a [DNMT3a]) under hypoxic conditions on S100A6 transcription, thereby promoting the growth and metastasis of lung cancer cells. Methods: The expression of HIF-1α or S100A6 in lung cancer cells was interfered with under normoxic and hypoxic conditions, and the cell proliferative, migratory, and invasive properties were assessed. The mechanism of HIF-1α-regulated TET2 and DNMT3 effects on S100A6 transcription under hypoxic conditions was further investigated. Results: Functionally, S100A6 over-expression promoted lung cancer cell proliferation and metastasis. S100A6 over-expression reversed the inhibitory effects of HIF-1α interference on the proliferation and metastasis of lung cancer cells. S100A6 was induced to express in an HIF-1α-dependent manner under hypoxic conditions, and silencing S100A6 or HIF-1α suppressed lung cancer cell proliferation and metastasis under hypoxic conditions. Further, The Cancer Genome Atlas-lung adenocarcinoma database analysis revealed that S100A6 mRNA levels had a negative correlation with methylation levels. Mechanistically, CpG hypomethylation status in the S100A6 promoter hypoxia response element had an association with HIF-1α induction. TET2 was enriched in S100A6 promoter region of lung cancer cells under hypoxic conditions, whereas DNMT3a enrichment was reduced in S100A6 promoter region. HIF-1α-mediated S100A6 activation was linked to DNMT3a-associated epigenetic inactivation and TET2 activation. Innovation: The activation of HIF-1α-mediated DNA methylation enzymes under hypoxic conditions regulated S100A6 transcription, thereby promoting lung cancer cell growth and metastasis. Conclusion: In lung cancer progression, hypoxia-induced factor HIF-1α combined with DNA methylation modifications co-regulates S100A6 transcriptional activation and promotes lung cancer cell growth and metastasis.

15.
Front Public Health ; 12: 1332030, 2024.
Article in English | MEDLINE | ID: mdl-38304178

ABSTRACT

People are increasingly using the web for fact-checking and other forms of information seeking. The "Google effects" refers to the idea that individuals rely on the Internet as a source of knowledge rather than remembering it for themselves. However, few literature review have yet comprehensively examined the media effects of this intensive Internet search behavior. In this study, by carrying out meta-analysis, we found that google effects is closely associated with cognitive load, behavioral phenotype and cognitive self-esteem. And this phenomenon is also more likely to happen while using a mobile phone to browse the Internet rather than a computer. People with a larger knowledge base are less susceptible to the consequences of Internet use than those with a smaller knowledge base. The media effect was stronger for persons who had used the Internet before than for those who had not. And meta-analyses show that participants in North America (parameter = -1.0365, 95%CI = [-1.8758, -0.1972], p < 0.05) are more susceptible to frequent Internet search behavior relative to other regions. Overall, google effects on memory challenges the way individuals seek and read information, and it may lead to changes in cognitive and memory mechanisms.


Subject(s)
Cell Phone , Information Seeking Behavior , Humans , Search Engine , Internet , North America
16.
Bioengineering (Basel) ; 11(2)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38391660

ABSTRACT

Functional ultrasound (fUS) flow imaging provides a non-invasive method for the in vivo study of cerebral blood flow and neural activity. This study used functional flow imaging to investigate rat brain's response to ultrasound and colored-light stimuli. Male Long-Evan rats were exposed to direct full-field strobe flashes light and ultrasound stimulation to their retinas, while brain activity was measured using high-frequency ultrasound imaging. Our study found that light stimuli, particularly blue light, elicited strong responses in the visual cortex and lateral geniculate nucleus (LGN), as evidenced by changes in cerebral blood volume (CBV). In contrast, ultrasound stimulation elicited responses undetectable with fUS flow imaging, although these were observable when directly measuring the brain's electrical signals. These findings suggest that fUS flow imaging can effectively differentiate neural responses to visual stimuli, with potential applications in understanding visual processing and developing new diagnostic tools.

17.
Theranostics ; 14(3): 1241-1259, 2024.
Article in English | MEDLINE | ID: mdl-38323308

ABSTRACT

Rationale: The transition from acute inflammation to fibrosis following myocardial ischemia‒reperfusion (MIR) significantly affects prognosis. Macrophages play a pivotal role in inflammatory damage and repair after MIR. However, the heterogeneity and transformation mechanisms of macrophages during this transition are not well understood. Methods: In this study, we used single-cell RNA sequencing (scRNA-seq) and mass cytometry to examine murine monocyte-derived macrophages after MIR to investigate macrophage subtypes and their roles in the MIR process. S100a9-/- mice were used to establish MIR model to clarify the mechanism of alleviating inflammation and fibrosis after MIR. Reinfusion of bone marrow-derived macrophages (BMDMs) after macrophage depletion (MD) in mice subjected to MIR were performed to further examine the role of S100a9hi macrophages in MIR. Results: We identified a unique subtype of S100a9hi macrophages that originate from monocytes and are involved in acute inflammation and fibrosis. These S100a9hi macrophages infiltrate the heart as early as 2 h post-reperfusion and activate the Myd88/NFκB/NLRP3 signaling pathway, amplifying inflammatory responses. As the tissue environment shifts from proinflammatory to reparative, S100a9 activates transforming growth factor-ß (Tgf-ß)/p-smad3 signaling. This activation not only induces the transformation of myocardial fibroblasts to myofibroblasts but also promotes fibrosis via the macrophage-to-myofibroblast transition (MMT). Targeting S100a9 with a specific inhibitor could effectively mitigate acute inflammatory damage and halt the progression of fibrosis, including MMT. Conclusion: S100a9hi macrophages are a promising therapeutic target for managing the transition from inflammation to fibrosis after MIR.


Subject(s)
Coronary Artery Disease , Myocardial Reperfusion Injury , Mice , Animals , Macrophages/metabolism , Myocardial Reperfusion Injury/pathology , Fibrosis , Inflammation/metabolism , Coronary Artery Disease/pathology , Ischemia/pathology , Reperfusion , Sequence Analysis, RNA , Mice, Inbred C57BL
18.
Biomed Pharmacother ; 172: 116233, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38308971

ABSTRACT

Acute lung injury (ALI) is characterized by pulmonary diffusion abnormalities that may progress to multiple-organ failure in severe cases. There are limited effective treatments for ALI, which makes the search for new therapeutic avenues critically important. Macrophages play a pivotal role in the pathogenesis of ALI. The degree of macrophage polarization is closely related to the severity and prognosis of ALI, and S100A9 promotes M1 polarization of macrophages. The present study assessed the effects of S100A9-gene deficiency on macrophage polarization and acute lung injury. Our cohort study showed that plasma S100A8/A9 levels had significant diagnostic value for pediatric pneumonia and primarily correlated with monocyte-macrophages and neutrophils. We established a lipopolysaccharide (LPS)-induced mouse model of acute lung injury and demonstrated that knockout of the S100A9 gene mitigated inflammation by suppressing the secretion of pro-inflammatory cytokines, reducing the number of inflammatory cells in the bronchoalveolar lavage fluid, and inhibiting cell apoptosis, which ameliorated acute lung injury in mice. The in vitro and in vivo mechanistic studies demonstrated that S100A9-gene deficiency inhibited macrophage M1 polarization and reduced the levels of pulmonary macrophage chemotactic factors and inflammatory cytokines by suppressing the TLR4/MyD88/NF-κB signaling pathway and reversing the expression of the NLRP3 pyroptosis pathway, which reduced cell death. In conclusion, S100A9-gene deficiency alleviated LPS-induced acute lung injury by inhibiting macrophage M1 polarization and pyroptosis via the TLR4/MyD88/NFκB pathway, which suggests a potential therapeutic strategy for the treatment of ALI.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Humans , Child , Mice , Animals , Lipopolysaccharides/adverse effects , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Pyroptosis , Cohort Studies , Signal Transduction , Acute Lung Injury/metabolism , Macrophages/metabolism , Cytokines/metabolism , Calgranulin B/genetics , Calgranulin B/metabolism
19.
Sci Adv ; 10(6): eadk8426, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335289

ABSTRACT

Acute liver failure (ALF) is a critical medical condition defined as the rapid development of hepatic dysfunction. Conventional ultrasound elastography cannot continuously monitor liver stiffness over the course of rapidly changing diseases for early detection due to the requirement of a handheld probe. In this study, we introduce wearable bioadhesive ultrasound elastography (BAUS-E), which can generate acoustic radiation force impulse (ARFI) to induce shear waves for the continuous monitoring of modulus changes. BAUS-E contains 128 channels with a compact design with only 24 mm in the azimuth direction for comfortable wearability. We further used BAUS-E to continuously monitor the stiffness of in vivo rat livers with ALF induced by d-galactosamine over 48 hours, and the stiffness change was observed within the first 6 hours. BAUS-E holds promise for clinical applications, particularly in patients after organ transplantation or postoperative care in the intensive care unit (ICU).


Subject(s)
Elasticity Imaging Techniques , Wearable Electronic Devices , Humans , Ultrasonography
20.
Acta Pharmacol Sin ; 45(5): 959-974, 2024 May.
Article in English | MEDLINE | ID: mdl-38225394

ABSTRACT

Following acute myocardial ischemia reperfusion (MIR), macrophages infiltrate damaged cardiac tissue and alter their polarization phenotype to respond to acute inflammation and chronic fibrotic remodeling. In this study we investigated the role of macrophages in post-ischemic myocardial fibrosis and explored therapeutic targets for myocardial fibrosis. Male mice were subjected to ligation of the left coronary artery for 30 min. We first detected the levels of chemokines in heart tissue that recruited immune cells infiltrating into the heart, and found that granulocyte-macrophage colony-stimulating factor (GMCSF) released by mouse cardiac microvascular endothelial cells (MCMECs) peaked at 6 h after reperfusion, and c-c motif chemokine ligand 2 (CCL2) released by GMCSF-induced macrophages peaked at 24 h after reperfusion. In co-culture of BMDMs with MCMECs, we demonstrated that GMCSF derived from MCMECs stimulated the release of CCL2 by BMDMs and effectively promoted the migration of BMDMs. We also confirmed that GMCSF promoted M1 polarization of macrophages in vitro, while GMCSF neutralizing antibodies (NTABs) blocked CCL2/CCR2 signaling. In MIR mouse heart, we showed that GMCSF activated CCL2/CCR2 signaling to promote NLRP3/caspase-1/IL-1ß-mediated and amplified inflammatory damage. Knockdown of CC chemokine receptor 2 gene (CCR2-/-), or administration of specific CCR2 inhibitor RS102895 (5 mg/kg per 12 h, i.p., one day before MIR and continuously until the end of the experiment) effectively reduced the area of myocardial infarction, and down-regulated inflammatory mediators and NLRP3/Caspase-1/IL-1ß signaling. Mass cytometry confirmed that M2 macrophages played an important role during fibrosis, while macrophage-depleted mice exhibited significantly reduced transforming growth factor-ß (Tgf-ß) levels in heart tissue after MIR. In co-culture of macrophages with fibroblasts, treatment with recombinant mouse CCL2 stimulated macrophages to release a large amount of Tgf-ß, and promoted the release of Col1α1 by fibroblasts. This effect was diminished in BMDMs from CCR2-/- mice. After knocking out or inhibiting CCR2-gene, the levels of Tgf-ß were significantly reduced, as was the level of myocardial fibrosis, and cardiac function was protected. This study confirms that the acute injury to chronic fibrosis transition after MIR in mice is mediated by GMCSF/CCL2/CCR2 signaling in macrophages through NLRP3 inflammatory cascade and the phenotype switching.


Subject(s)
Chemokine CCL2 , Fibrosis , Granulocyte-Macrophage Colony-Stimulating Factor , Macrophages , Mice, Inbred C57BL , Myocardial Reperfusion Injury , Phenotype , Receptors, CCR2 , Animals , Receptors, CCR2/metabolism , Receptors, CCR2/antagonists & inhibitors , Macrophages/metabolism , Macrophages/drug effects , Male , Chemokine CCL2/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Mice , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Myocardium/metabolism , Signal Transduction , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Cells, Cultured , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...