Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Small ; : e2311823, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456380

ABSTRACT

Perception of UV radiation has important applications in medical health, industrial production, electronic communication, etc. In numerous application scenarios, there is an increasing demand for the intuitive and low-cost detection of UV radiation through colorimetric visual behavior, as well as the efficient and multi-functional utilization of UV radiation. However, photodetectors based on photoconductive modes or photosensitive colorimetric materials are not conducive to portable or multi-scene applications owing to their complex and expensive photosensitive components, potential photobleaching, and single-stimulus response behavior. Here, a multifunctional visual sensor based on the "host-guest photo-controlled permutation" strategy and the "lock and key" model is developed. The host-guest specific molecular recognition and electrochromic sensing platform is integrated at the micro-molecular scale, enabling multi-functional and multi-scene applications in the convenient and fast perception of UV radiation, military camouflage, and information erasure at the macro level of human-computer interaction through light-electrical co-controlled visual switching characteristics. This light-electrical co-controlled visual sensor based on an optoelectronic multi-mode sensing system is expected to provide new ideas and paradigms for healthcare, microelectronics manufacturing, and wearable electronic devices owing to its advantages of signal visualization, low energy consumption, low cost, and versatility.

2.
Macromol Rapid Commun ; 45(5): e2300506, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38134364

ABSTRACT

Condensation of 3,3'-diamino-2,2'-ethylene-bridged azobenzene with 1,2,4,5-tetrakis-(4-formylphenyl) benzene produces a visible light responsive porous 2D covalent organic framework, COF-bAzo-TFPB, with a large surface area, good crystallinity, and thermal and chemical stability. The results demonstrate that the elaborated designed linker can make azo unit on the COF-bAzo-TFPB skeleton undergo reversible photoisomerization. This work expands the application scope of covalent organic frameworks in photo-controlled release, uptake of guest molecules, dynamic photoswitching, and UV-sensitive functions.


Subject(s)
Metal-Organic Frameworks , Azo Compounds , Benzene , Light
3.
Polymers (Basel) ; 13(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34771229

ABSTRACT

A new mechanochemical method was developed to convert polymer wastes, polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC), to fuel gases (H2, CH4, and CO) under ball-milling with KMnO4 at room temperature. By using various solid-state characterizations (XPS, SEM, EDS, FTIR, and NMR), and density functional theory calculations, it was found that the activation followed the hydrogen atom transfer (HAT) mechanism. Two metal oxidant molecules were found to abstract two separate hydrogen atoms from the α-CH and ß-CH units of substrates, [-ßCH2-αCH(R)-]n, where R = H in PE, R = γCH3 in PP, and R = Cl in PVC, resulting in a di-radical, [-ßCH•-αC•(R)-]. Subsequently, the two unpaired electrons of the di-radical were recombined into an alkene intermediate, [-ßCH = αC(R)-], which underwent further oxidation to produce H2, CH4, and CO gases.

4.
Food Chem ; 355: 129656, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33813158

ABSTRACT

A visible-light-responsive azobenzene derivative, 3,5-dichloro-4-((2,6-dichloro-4-(methacryloyloxy)phenyl)diazenyl)benzoic acid, was synthesized and used as the functional monomer to fabricate a visible-light-responsive core-shell structured surface molecularly imprinted polymer (PS-co-PMAA@VSMIP). After removal of the sacrificial PS-co-PMAA core, a hollow structured surface molecularly imprinted polymer (HVSMIP) was obtained. Both the PS-co-PMAA@VSMIP and HVSMIP were used for the detection of chlorpyrifos, a moderately toxic organophosphate pesticide. They exhibited good visible-light-responsive properties (550 nm for trans→cis and 440 nm for cis→trans isomerization for an azobenzene chromophore) in ethanol/water (9:1, v/v). Compared with the PS-co-PMAA@VSMIP, the HVSMIP had a larger surface area, pore volume, binding capacity, imprinting effect, maximum chemical binding capacity, dissociation constant, and photo-isomerization rate. The HVSMIP was applied to detect trace chlorpyrifos in fruit and vegetable samples. This was achieved by measuring the trans→cis rate constant of the HVSMIP in the sample solution, with good recoveries, low relative standard deviations, and a low detection limit.


Subject(s)
Chlorpyrifos/analysis , Food Analysis/methods , Food Contamination/analysis , Fruit/chemistry , Light , Molecularly Imprinted Polymers/chemistry , Vegetables/chemistry , Molecularly Imprinted Polymers/chemical synthesis , Water/chemistry
5.
Front Chem ; 8: 583036, 2020.
Article in English | MEDLINE | ID: mdl-33195073

ABSTRACT

As a moderately toxic organophosphorus pesticide, profenofos (PFF) is widely used in agricultural practice, resulting in the accumulation of a high amount of PFF in agricultural products and the environment. This will inevitably damage our health. Therefore, it is important to establish a convenient and sensitive method for the detection of PFF. This paper reports a photoresponsive surface-imprinted polymer based on poly(styrene-co-methyl acrylic acid) (PS-co-PMAA@PSMIPs) for the detection of PFF by using carboxyl-capped polystyrene microspheres (PS-co-PMAA), PFF, 4-((4-(methacryloyloxy)phenyl)diazenyl) benzoic acid, and triethanolamine trimethacrylate as the substrate, template, functional monomer, and cross-linker, respectively. PS-co-PMAA@PSMIP shows good photoresponsive properties in DMSO/H2O (3:1, v/v). Its photoisomerization rate constant exhibits a good linear relationship with PFF concentration in the range of 0~15 µmol/L. PS-co-PMAA@PSMIP was applied for the determination of PFF in spiked tomato and mangosteen with good recoveries ranging in 94.4-102.4%.

6.
Chemistry ; 26(63): 14461-14466, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-32734646

ABSTRACT

The catalytic chemosensing assay (CCA), a new indicator displacement assay, was developed for selective detection of methomyl, a highly toxic pesticide. Trimetallic complex {[FeII (dmbpy)(CN)4 ]-[PtII (DMSO)Cl]2 -[RuII (bpy)2 (CN)2 ]} (1; dmbpy=4,4'-dimethyl-2,2'-bipyridine, bpy=2,2'-bipyridine) was synthesized as a task-specific catalyst to initially reduce and degrade methomyl to CH3 SH/CH3 NH2 /CH3 CN/CO2 . The thus-produced CH3 SH interacts with the trimetallic complex to displace the cis-[RuII (bpy)2 (CN)2 ] luminophore for monitoring. Other pesticides, including organophosphates and similar carbamate pesticides, remained intact under the same catalytic conditions; a selective sensing signal is only activated when 1 recognizes methomyl. Furthermore, 1 can be applied to detect methomyl in real water samples. In the luminescent mode of the assay, the method detection limit (MDL) of 1 for methomyl (LD50 =17 mg kg-1 ) was 1.12 mg L-1 .

7.
Mater Sci Eng C Mater Biol Appl ; 106: 110253, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31753332

ABSTRACT

The application of photoresponsive surface molecularly imprinted polymers based on azobenzene is limited by the UV light source required and their poor water solubility. Reducing the phototoxicity and solvent toxicity of the polymers therefore presents a challenge. In this work, an NIR-light-responsive surface molecularly imprinted polymer was fabricated by atom transfer radical polymerization using up-conversion nanoparticles as the core, a hydrophilic green-light-responsive azobenzene derivative as the functional monomer, and a drug as the template. The up-conversion nanoparticles core emitted green fluorescence in the range of 520-550 nm upon NIR irradiation (980 nm, 5 W cm-2), which was absorbed by the azobenzene containing molecularly imprinted polymers layer on the up-conversion nanoparticles surface. This caused the azobenzene chromophores to undergo trans→cis isomerization in phosphate buffered solution (pH = 7.4), thus resulting in NIR-light-induced drug release. The up-conversion fluorescence spectra were used to study the interaction mechanism between the azobenzene monomer and NIR light. Compared with structural analogues of the template (antifebrin and phenacetin), the NIR-light-responsive surface molecularly imprinted polymer showed excellent specificity of recognition for the template drug (paracetamol). The maximum adsorption capacity of the NIR-light-responsive surface molecularly imprinted polymer for loading of paracetamol was 16.80 µmol g-1. The NIR-light-responsive surface molecularly imprinted polymer was applied for NIR-light-induced paracetamol release in phosphate buffered solution (pH = 7.4) through porcine tissue. This work demonstrates the potential of drug delivery systems based on molecularly imprinted polymers for application in deep tissue delivery.


Subject(s)
Molecular Imprinting/methods , Polymers/chemistry , Animals , Azo Compounds/chemistry , Cell Line, Tumor , Drug Liberation , Humans , Hydrophobic and Hydrophilic Interactions , Kinetics , Microscopy, Electrochemical, Scanning , Polymerization , Swine
8.
Chemistry ; 25(41): 9643-9649, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31017704

ABSTRACT

Herein, a catalytic chemosensing assay (CCA), based on a bimetallic complex, [RuII (bpy)2 (CN)2 ]2 (CuI I)2 (bpy=2,2'-bipyridine), is described. This complex integrates a task-specific catalyst (CuI -catalyst) and a signaling unit ([RuII (bpy)2 (CN)2 ]) to specifically hydrolyze methyl parathion, a highly toxic organophosphate (OP) pesticide. The bimetallic complex catalyzed the hydrolysis of the phosphate ester to generate o,o-dimethyl thiophosphate (DTP) anion and 4-nitrophenolate. Intrinsically, 4-nitrophenolate absorbed UV/Vis light at λmax =400 nm, creating the first level of the chemosensing signal. DTP interacted with the original complex to displace the chromophore, [RuII (bpy)2 (CN)2 ], which was monitored by spectrofluorometry; this was classified as the second level of chemosensing signal. By integrating both spectroscopic and spectrofluorometric signals with a simple AND logic gate, only methyl parathion was able to provide a positive response. Other aromatic and aliphatic OP pesticides (diazinon, fenthion, meviphos, terbufos, and phosalone) and 4-nitrophenyl acetate provided negative responses. Furthermore, owing to the metal-catalyzed hydrolysis of methyl parathion, the CCA system led to the detoxification of the pesticide. The CCA system also demonstrated its catalytic chemosensing properties in the detection of methyl parathion in real samples, including tap water, river water, and underground water.


Subject(s)
Copper/chemistry , Methyl Parathion/analysis , Organometallic Compounds/chemistry , Pesticides/analysis , Water Pollutants, Chemical/analysis , Catalysis , Colorimetry/methods , Coordination Complexes/chemistry , Fluorometry/methods , Hydrolysis , Models, Molecular , Nitrophenols/chemistry , Organothiophosphates/chemistry , Spectrophotometry, Ultraviolet/methods , Water/analysis
9.
Mater Sci Eng C Mater Biol Appl ; 96: 661-668, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30606579

ABSTRACT

The trans to cis isomerization of the azobenzene chromophore in most azobenzene-based photoresponsive molecularly imprinted polymers (MIPs) is initiated by UV irradiation. This limits the application of these materials in cases where UV light toxicity is an issue, such as in biological systems, food monitoring, and drug delivery. Herein we report a tetra-ortho-methyl substituted azobenzene, (4-[(4-methacryloyloxy)-2,6-dimethyl phenylazo]-3,5-dimethyl benzenesulfonic acid (MADPADSA). The photoswitching of MADPADSA could be induced by visible-light irradiation (550 nm for trans to cis and 475 nm for cis to trans) in 4-hydroxyethylpiperazineethanesulfonic acid (HEPES) buffer-ethanol (4:1, v/v) at pH 7.0, however, the photoisomerization was slow. With the use of MADPADSA as a functional monomer, NaYF4:Yb3+,Er3+ as a substrate, 4-ethylphenol (4-EP) as a template, a novel photoresponsive surface molecularly imprinted polymer NaYF4:Yb3+,Er3+@MIP was obtained. The NaYF4:Yb3+,Er3+@MIP displayed rapid visible-light-induced photoswitching. The NaYF4:Yb3+,Er3+ substrate could efficiently increase the trans to cis isomerization rate of the photoresponsive MIP on its surface, which was faster than that of the corresponding azobenzene monomer MADPADSA. Possible reasons for this effect were investigated by fluorescence spectroscopy. NaYF4:Yb3+,Er3+@MIP displayed good specificity toward 4-EP with a specific binding constant (Kd) of 3.67 × 10-6 mol L-1 and an apparent maximum adsorption capacity (Qmax) of 10.73 µmol g-1, respectively. NaYF4:Yb3+,Er3+@MIP was applied to determine the concentration of 4-EP in red wine with good efficiency and a limit of detection lower than the value that could cause an unpleasant off-flavor.


Subject(s)
Phenols/analysis , Photochemical Processes , Ultraviolet Rays , Wine/analysis , Spectrometry, Fluorescence
10.
Mater Sci Eng C Mater Biol Appl ; 92: 365-373, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30184762

ABSTRACT

A new photoresponsive surface molecularly imprinted polymer shell (PMIPS) was developed for determination of trace griseofulvin from milk. The PMIPS was prepared by surface imprinting technique using poly(styrene-co-methacrylic acid) (PS-co-PMMA) microspheres as the sacrificial substrate, griseofulvin as the template, a photoresponsive azobenzene derivative 4-((4-(methacryloyloxy)phenyl)diazenyl)-3,5-dimethyl benzenesulfonic acid as the functional monomer, and triethanolamine trimethacrylate as the cross-linker. The PMIPS was obtained after the removal of the sacrificial PS-co-PMMA core from the surface imprinted core-shell microspheres, PS-co-PMAA@PMIP. Compared with PS-co-PMAA@PMIP, PMIPS displayed better properties such as higher surface area and pore volume, rapid photo-isomerization rate, and higher adsorption capacities, specific binding constant and binding density. The PMIPS could efficiently detect griseofulvin in complex samples such as milk.


Subject(s)
Griseofulvin/analysis , Light , Milk/chemistry , Molecular Imprinting , Polymers/chemistry , Adsorption , Animals , Isomerism , Kinetics , Nitrogen/chemistry , Polymers/chemical synthesis , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Temperature
11.
Chem Sci ; 8(5): 3812-3820, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28580114

ABSTRACT

Latent catalysts can be tuned to function smartly by assigning a sensing threshold using the displacement approach for targeted analytes. Three cyano-bridged bimetallic complexes were synthesized as "smart" latent catalysts through the supramolecular assembly of different metallic donors [FeII(CN)6]4-, [FeII(tBubpy)(CN)4]2-, and FeII(tBubpy)2(CN)2 with a metallic acceptor [CuII(dien)]2+. The investigation of both their thermodynamic and kinetic properties on binding with toxic pollutants provided insight into their smart off-on catalytic capabilities, enabling us to establish a threshold-controlled catalytic system for the degradation of pollutants such as cyanide and oxalate. With these smart latent catalysts, a new catalyst displacement assay (CDA) was demonstrated and applied in a real wastewater treatment process to degrade cyanide pollutants in both domestic (level I, untreated) and industrial wastewater samples collected in Hong Kong, China. The smart system was adjusted to be able to initiate the catalytic oxidation of cyanide at a threshold concentration of 20 µM (the World Health Organization's suggested maximum allowable level for cyanide in wastewater) to the less harmful cyanate under ambient conditions.

12.
Mater Sci Eng C Mater Biol Appl ; 76: 568-578, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28482565

ABSTRACT

This paper reports a photoresponsive hollow molecularly imprinted polymer for the determination of trace triamterene in biological sample. The photoresponsive hollow molecularly imprinted polymer was prepared on sacrificial silica microspheres via surface imprinting technique through atom transfer radical polymerization using a novel water-soluble azobenzene derivative, 4-[(4-methacryloyloxy)phenylazo]-3,5-dimethyl benzenesulfonic acid, as the functional monomer, and the sacrificial silica core was subsequently removed using HF etching method with 1.25vol.% HF ethanolic solution. The morphologies and properties of the photoresponsive hollow molecularly imprinted polymer were further characterized and compared systematically with the corresponding photoresponsive surface molecularly imprinted polymer. Compared with surface imprinted polymer, the hollow material displayed higher binding capacity, better recognition ability, faster mass-transfer rate, and larger isomerization rate constants toward triamterene. The static binding properties of the imprinted materials were investigated under three irradiation conditions. The photoresponsive hollow molecularly imprinted polymer showed better specificity toward triamterene than its structural analogues (folic acid and caffeine) as examined by UV-vis and HPLC. The photoresponsive hollow molecularly imprinted polymer was utilized for the determination of trace triamterene in biological samples (human urine and serum) with advantages of simple sample pre-treatment, good recovery and good sensitivity.


Subject(s)
Polymers/chemistry , Humans , Microspheres , Molecular Imprinting , Polymerization , Triamterene
13.
J Sep Sci ; 40(6): 1396-1402, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28106341

ABSTRACT

We aim to develop novel photoresponsive surface molecularly imprinted polymer (SIMP) microspheres, an SiO2 -SIMP, for the photocontrolled extraction of uric acid from biological samples. The SiO2 -SMIP was prepared on silica microspheres by surface polymerization and characterized by using scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, thermogravimetric analysis, nitrogen adsorption-desorption analysis, and UV-visible spectroscopy. The SiO2 -SMIP microspheres showed a photocontrolled uptake and release of uric acid in NaH2 PO4 buffer upon alternate irradiation at 365 and 440 nm. The SiO2 -SMIP microspheres were able to photocontrollably extract uric acid from complicated biological samples for concentration analysis with no significant interference encountered and it exhibited very good recognition ability and fast binding kinetics toward uric acid.


Subject(s)
Microspheres , Molecular Imprinting , Uric Acid/isolation & purification , Adsorption , Humans , Polymers , Silicon Dioxide , Uric Acid/urine
14.
Food Chem ; 216: 382-9, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27596434

ABSTRACT

Detection of volatile biogenic sulfides (VBS) plays a crucial role in food safety because the amounts of these compounds can reflect the freshness of meat. A new indicator-displacement assay with Re(I)-Pt(II) complexes, [Re(Lig)(CO)3(bridge)]-[Pt(DMSO)(Cl)2] (1: Lig=5-phenyl-1,10-phenanthroline and bridge=NCS(-); 2: Lig=5-phenyl-1,10-phenanthroline and bridge=CN(-); 3: Lig=2,2'-biquinoline and bridge=NCS(-)), was demonstrated to be a very effective sensing method to VBS. The results indicated that the control of Re(I)-bridge-Pt(II) and Re(I)-ligand combination are able to regulate their sensing selectivity and sensitivity. This system was successfully applied to detect CH3SCH3 in real rotten pork with a linear luminometric response up to 20.0mgkg(-1) (R=0.997) with the detection limit as 0.05 mgkg(-1). Complex 1 also gave comparable results on the detection of VBS with respect to those determined by GCMS with recovery range from 76% to 102% (RSD%=13.8).


Subject(s)
Coordination Complexes , Platinum/chemistry , Red Meat/analysis , Rhenium/chemistry , Sulfides/analysis , Volatile Organic Compounds/analysis , Animals , Dimethyl Sulfoxide/chemistry , Food Storage , Phenanthrolines/chemistry , Quinolines/chemistry , Sensitivity and Specificity , Swine
15.
J Colloid Interface Sci ; 481: 236-44, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27478978

ABSTRACT

A photoresponsive hollow molecularly imprinted polymer (PHMIP) was fabricated for photoresponsive recognition and determination of trace bisphenol A (BPA) in aqueous media using a water-soluble azo compound as the functional monomer. The PHMIP was prepared on sacrificial silica microspheres by surface imprinting and subsequent removal of the silica core. The PHMIP displayed photocontrolled recognition for BPA. SEM, TEM, FT-IR, TGA and N2 adsorption-desorption analyses confirmed successful formation of the hollow structure. The PHMIP displayed higher binding capacity, a larger specific area, and faster mass transfer rate than its corresponding surface molecularly imprinted polymer. The PHMIP was used to determine trace BPA in real samples with a limit of detection of 0.5ppm. For samples spiked at 0-10ppm, the BPA recoveries were in the range of 93.0%-99.0%. This PHMIP-based method provides convenient and inexpensive detection method for trace BPA in environmental samples. This method is especially suitable for determining materials that do not possess specific spectroscopic or luminescent properties.

16.
Chemistry ; 22(28): 9513-8, 2016 Jul 04.
Article in English | MEDLINE | ID: mdl-27168079

ABSTRACT

Plastic waste is a valuable organic resource. However, proper technologies to recover usable materials from plastic are still very rare. Although the conversion/cracking/degradation of certain plastics into chemicals has drawn much attention, effective and selective cracking of the major waste plastic polyethylene is extremely difficult, with degradation of C-C/C-H bonds identified as the bottleneck. Pyrolysis, for example, is a nonselective degradation method used to crack plastics, but it requires a very high energy input. To solve the current plastic pollution crisis, more effective technologies are needed for converting plastic waste into useful substances that can be fed into the energy cycle or used to produce fine chemicals for industry. In this study, we demonstrate a new and effective chemical approach by using the Fenton reaction to convert polyethylene plastic waste into carboxylic acids under ambient conditions. Understanding the fundamentals of this new chemical process provides a possible protocol to solve global plastic-waste problems.

17.
Mater Sci Eng C Mater Biol Appl ; 66: 33-39, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27207036

ABSTRACT

A photoresponsive surface molecularly imprinted polymer for uric acid in physiological fluids was fabricated through a facile and effective method using bio-safe and biocompatible ZnO nanorods as a support. The strategy was carried out by introducing double bonds on the surface of the ZnO nanorods with 3-methacryloxypropyltrimethoxysilane. The surface molecularly imprinted polymer on ZnO nanorods was then prepared by surface polymerization using uric acid as template, water-soluble 5-[(4-(methacryloyloxy)phenyl)diazenyl]isophthalic acid as functional monomer, and triethanolamine trimethacryl ester as cross-linker. The surface molecularly imprinted polymer on ZnO nanorods showed good photoresponsive properties, high recognition ability, and fast binding kinetics toward uric acid, with a dissociation constant of 3.22×10(-5)M in aqueous NaH2PO4 buffer at pH=7.0 and a maximal adsorption capacity of 1.45µmolg(-1). Upon alternate irradiation at 365 and 440nm, the surface molecularly imprinted polymer on ZnO nanorods can quantitatively uptake and release uric acid.


Subject(s)
Molecular Imprinting , Nanotubes/chemistry , Polymers/chemistry , Uric Acid/analysis , Zinc Oxide/chemistry , Adsorption , Kinetics , Methacrylates/chemistry , Silanes/chemistry , Spectroscopy, Fourier Transform Infrared , Water/chemistry
18.
J Mol Recognit ; 29(3): 123-30, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25808412

ABSTRACT

This study aimed to develop a photoresponsive molecularly imprinted hydrogel (MIH) casting membrane for the determination of trace tetracycline (TC) in milk. This MIH casting membrane combined the specificity of MIHs, the photoresponsive properties of azobenzene, and the portable properties of a membrane. Photoresponsive TC-imprinted MIHs were initially fabricated and then cast on sodium dodecyl sulfonate polyacrylamide gel. After TC removal, a photoresponsive MIH casting membrane was obtained. The photoresponsive properties of the MIH casting membrane were robust, and no obvious photodegradation was observed after 20 cycles. The MIH casting membrane displayed specific affinity to TC upon alternate irradiation at 365 and 440 nm; it could quantitatively uptake and release TC. The TC concentration (0.0-2.0 × 10(-4) mol l(-1)) in aqueous solution displayed a linear relationship with the photoisomerization rate constant of azobenzene within the MIH casting membrane. As such, a quick detection method for trace TC in aqueous foodstuff samples was established. The recovery of this method for TC in milk was investigated with a simple pretreatment of milk, and a high recovery of 100.54-106.35% was obtained. Therefore, the fabricated membrane can be used as a portable molecular sensor that can be easily recycled.


Subject(s)
Anti-Bacterial Agents/analysis , Hydrogels/chemistry , Milk/chemistry , Tetracycline/analysis , Animals , Membranes, Artificial , Molecular Imprinting , Molecular Structure , Photochemical Processes
19.
Anal Chim Acta ; 900: 10-20, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26572835

ABSTRACT

Photoresponsive molecularly imprinted polymers (PMIPs) containing azobenzene have received wide research attention in recent years and made notable achievements. This article reviews the recent developments on PMIPs containing azobenzene. Topics include the following: (i) brief introduction of azobenzene, molecularly imprinted polymers, and PMIPs containing azobenzene; (ii) progress in functional monomers, cross-linkers, and polymerization conditions; (iii) preparation methods, properties, applications, as well as advantages and disadvantages of conventional PMIPs; (iv) substrate, preparation method, and applications of photoresponsive surface molecularly imprinted polymers; and (v) some perspectives for further development of PMIPs containing azobenzene.


Subject(s)
Azo Compounds/analysis , Molecular Imprinting , Polymers/chemistry , Polymerization
20.
Chemistry ; 21(37): 12984-90, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26198787

ABSTRACT

A new bimetallic Fe(II) -Cu(II) complex was synthesized, characterized, and applied as a selective and sensitive sensor for cyanide detection in water. This complex is the first multifunctional device that can simultaneously detect cyanide ions in real water samples, amplify the colorimetric signal upon detection for naked-eye recognition at the parts-per-million (ppb) level, and convert the toxic cyanide ion into the much safer cyanate ion in situ. The mechanism of the bimetallic complex for high-selectivity recognition and signaling toward cyanide ions was investigated through a series of binding kinetics of the complex with different analytes, including CN(-) , SO4 (2-) , HCO3 (-) , HPO4 (2-) , N3 (-) , CH3 COO(-) , NCS(-) , NO3 (-) , and Cl(-) ions. In addition, the use of the indicator/catalyst displacement assay (ICDA) is demonstrated in the present system in which one metal center acts as a receptor and inhibitor and is bridged to another metal center that is responsible for signal transduction and catalysis, thus showing a versatile approach to the design of new multifunctional devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...