Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Cancer Immunol Immunother ; 73(8): 137, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833034

ABSTRACT

Tumor-infiltrating lymphocyte (TIL) deficiency is the most conspicuous obstacle to limit the cancer immunotherapy. Immune checkpoint inhibitors (ICIs), such as anti-PD-1 antibody, have achieved great success in clinical practice. However, due to the limitation of response rates of ICIs, some patients fail to benefit from monotherapy. Thus, novel combination therapy that could improve the response rates emerges as new strategies for cancer treatment. Here, we reported that the natural product rocaglamide (RocA) increased tumor-infiltrating T cells and promoted Th17 differentiation of CD4+ TILs. Despite RocA monotherapy upregulated PD-1 expression of TILs, which was considered as the consequence of T cell activation, combining RocA with anti-PD-1 antibody significantly downregulated the expression of PD-1 and promoted proliferation of TILs. Taken together, these findings demonstrated that RocA could fuel the T cell anti-tumor immunity and revealed the remarkable potential of RocA as a therapeutic candidate when combining with the ICIs.


Subject(s)
Benzofurans , Cell Differentiation , Immune Checkpoint Inhibitors , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Animals , Benzofurans/pharmacology , Benzofurans/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Humans , Cell Differentiation/drug effects , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Mice, Inbred C57BL , Female , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Cell Line, Tumor
2.
Am J Chin Med ; 52(3): 583-604, 2024.
Article in English | MEDLINE | ID: mdl-38716616

ABSTRACT

In recent years, due to advancements in medical conditions and the development of scientific research, the fundamental research of TCM antitumor treatments has progressed from the cellular level to the molecular and genetic levels. Previous studies have demonstrated the significant role of traditional Chinese medicine (TCM) in antitumor therapy through various mechanisms and pathways. Its mechanism of action is closely associated with cancer biology across different stages. This includes inhibiting tumor cell proliferation, blocking invasion and metastasis to surrounding tissues, inducing tumor cell apoptosis, inhibiting tumor angiogenesis, regulating immune function, maintaining genome stability, preventing mutation, and regulating cell energy metabolism. The use of TCM for eliciting antitumor effects not only has a good therapeutic effect and low side effects, it also provides a solid theoretical basis for clinical treatment and medication. This paper reviews the mechanism of the antitumor effects of TCM based on tumor characteristics. Through our review, we found that TCM not only directly inhibits tumors, but also enhances the body's immunity, thereby indirectly inducing an antitumor effect. This function aligns with the TCM theory of "strengthening the body's resistance to eliminate pathogenic factors". Furthermore, TCM will play a significant role in tumor treatment in clinical settings.


Subject(s)
Apoptosis , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Apoptosis/drug effects , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Neovascularization, Pathologic/drug therapy , Cell Proliferation/drug effects , Phytotherapy , Genomic Instability , Energy Metabolism/drug effects
3.
Free Radic Biol Med ; 219: 153-162, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657753

ABSTRACT

The anemia of inflammation (AI) is characterized by the presence of inflammation and abnormal elevation of hepcidin. Accumulating evidence has proved that Rocaglamide (RocA) was involved in inflammation regulation. Nevertheless, the role of RocA in AI, especially in iron metabolism, has not been investigated, and its underlying mechanism remains elusive. Here, we demonstrated that RocA dramatically suppressed the elevation of hepcidin and ferritin in LPS-treated mice cell line RAW264.7 and peritoneal macrophages. In vivo study showed that RocA can restrain the depletion of serum iron (SI) and transferrin (Tf) saturation caused by LPS. Further investigation showed that RocA suppressed the upregulation of hepcidin mRNA and downregulation of Fpn1 protein expression in the spleen and liver of LPS-treated mice. Mechanistically, this effect was attributed to RocA's ability to inhibit the IL-6/STAT3 pathway, resulting in the suppression of hepcidin mRNA and subsequent increase in Fpn1 and TfR1 expression in LPS-treated macrophages. Moreover, RocA inhibited the elevation of the cellular labile iron pool (LIP) and reactive oxygen species (ROS) induced by LPS in RAW264.7 cells. These findings reveal a pivotal mechanism underlying the roles of RocA in modulating iron homeostasis and also provide a candidate natural product on alleviating AI.


Subject(s)
Hepcidins , Homeostasis , Interleukin-6 , Iron , Lipopolysaccharides , Receptors, Transferrin , STAT3 Transcription Factor , Hepcidins/metabolism , Hepcidins/genetics , Animals , Mice , Iron/metabolism , RAW 264.7 Cells , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Lipopolysaccharides/pharmacology , Interleukin-6/metabolism , Interleukin-6/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Reactive Oxygen Species/metabolism , Gene Expression Regulation/drug effects , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology , Signal Transduction/drug effects , Anemia/metabolism , Anemia/genetics , Anemia/drug therapy , Anemia/pathology , Ferritins/metabolism , Ferritins/genetics , Male , Liver/metabolism , Liver/pathology , Macrophages/metabolism , Macrophages/drug effects , Cation Transport Proteins
4.
J Leukoc Biol ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456763

ABSTRACT

Immune evasion by cancer cells poses a significant challenge for natural killer (NK) cell-based immunotherapy. Pyroptosis, a newly discovered form of programmed cell death, has shown great potential for enhancing the antitumor immunity of NK cells. Consequently, targeting pyroptosis has become an attractive strategy for boosting NK cell activity against cancer. In this study, various assays were conducted, including NK cell cytotoxicity assays, flow cytometry, xenograft tumor models, real-time PCR, and ELISA to assess NK cell-mediated cell killing, as well as gene and protein expressions. The results indicated that Euphohelioscopin A (Eupho-A), a potential pyroptosis activator, enhances NK cell-mediated lysis of tumor cells, resulting in inhibiting tumor growth that could be reversed by NK cell depletion. Furthermore, we found that Eupho-A significantly enhanced IFN-γ production in NK cells and synergistically up-regulated GSDME with IFN-γ in cancer cells. Eupho-A also increased the cleavage of GSDME, promoting GZMB-induced pyroptosis, which could be reversed by GSDME knockdown and IFN-γ blockade. Overall, the findings suggested that Eupho-A enhanced NK cell-mediated killing of cancer cells by triggering pyroptosis, making Eupho-A a promising pyroptosis activator with great potential for using in NK cell-based cancer immunotherapy.

5.
Phytomedicine ; 128: 155333, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518633

ABSTRACT

BACKGROUND: Targeting long non-coding RNAs (LncRNAs) is a novel and promising approach in cancer therapy. In our previous study, we investigated the effects of ailanthone (aila), the main active compound derived from the stem barks of Ailanthus altissima (Mill.) Swingle, on the growth of non-small cell lung cancer (NSCLC) cells. Although we observed significant inhibition of NSCLC cell growth of aila, the underlying mechanisms involving LncRNAs, specifically LncRNA growth arrest specific 5 (GAS5), remain largely unknown. METHODS: To further explore the impact of aila on NSCLC, we performed a series of experiments. Firstly, we confirmed the inhibitory effect of aila on NSCLC cell growth using multiple assays, including MTT, wound healing, transwell assay, as well as subcutaneous and metastasis tumor mice models in vivo. Next, we utilized cDNA microarray and RT-QPCR to identify GAS5 as the primary target of aila. To verify the importance of GAS5 in aila-induced tumor inhibition, we manipulated GAS5 expression levels by constructing GAS5 over-expression and knockdown NSCLC cell lines. Furthermore, we investigated the upstream and downstream signaling pathways of GAS5 through western blot and RT-QPCR analysis. RESULTS: Our results showed that aila effectively increased GAS5 expression, as determined by microarray analysis. We also observed that aila significantly enhanced GAS5 expression in a dose- and time-dependent manner across various NSCLC cell lines. Notably, over-expression of GAS5 led to a significant suppression of NSCLC cell tumor growth; while aila had minimal inhibitory effect on GAS5-knockdown NSCLC cells. Additionally, we discovered that aila inhibited ULK1 and autophagy, and this inhibition was reversed by GAS5 knockdown. Moreover, we found that aila up-regulated GAS5 expression by suppressing UPF1-mediated nonsense-mediated mRNA decay (NMD). CONCLUSION: In summary, our findings suggest that aila promotes GAS5 expression by inhibiting UPF1-mediated NMD, leading to the repression of ULK1-mediated autophagy and subsequent inhibitory effects on NSCLC cells. These results indicate that aila is a potent enhancer of GAS5 and holds promising potential for application in NSCLC therapy. However, our research is currently focused only on NSCLC. It remains to be determined whether aila can also inhibit the growth of other types of tumors through the UPF1/GAS5/ULK1 signaling pathway. In future studies, we can further investigate the mechanisms by which aila suppresses other types of tumors and potentially broaden the scope of its application in cancer therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , RNA, Long Noncoding , Signal Transduction , Carcinoma, Non-Small-Cell Lung/drug therapy , RNA, Long Noncoding/genetics , Humans , Animals , Lung Neoplasms/drug therapy , Signal Transduction/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Mice , Mice, Nude , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Ailanthus/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Mice, Inbred BALB C , Quassins/pharmacology , RNA Helicases/metabolism
6.
Int J Biol Sci ; 18(2): 585-598, 2022.
Article in English | MEDLINE | ID: mdl-35002511

ABSTRACT

Background: Natural killer (NK) cell-based immunotherapy is clinically limited due to insufficient tumor infiltration in solid tumors. We have previously found that the natural product rocaglamide (RocA) can enhance NK cell-mediated killing of non-small cell lung cancer (NSCLC) cells by inhibiting autophagy, and autophagic inhibition has been shown to increase NK cell tumor infiltration in melanoma. Therefore, we hypothesized that RocA could increase NK cell infiltration in NSCLC by autophagy inhibition. Methods: Flow cytometry, RNA-sequencing, real-time PCR, Western blotting analysis, and xenograft tumor model were utilized to assess the infiltration of NK cells and the underlying mechanism. Results: RocA significantly increased the infiltration of NK cells and the expressions of CCL5 and CXCL10 in NSCLC cells, which could not be reversed by the inhibitions of autophagy/ULK1, JNK and NF-κB. However, such up-regulation could be suppressed by the inhibitions of TKB1 and STING. Furthermore, RocA dramatically activated the cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) signaling pathway, and the inhibition/depletion of STING ablated the up-regulation of CCL5 and CXCL10, NK cell infiltration, and tumor regression induced by RocA. Besides, RocA damaged mitochondrial DNA (mtDNA) and promoted the cytoplasmic release of mtDNA. The mPTP inhibitor cyclosporin A could reverse RocA-induced cytoplasmic release of mtDNA. Conclusions: RocA could promote NK cell infiltration by activating cGAS-STING signaling via targeting mtDNA, but not by inhibiting autophagy. Taken together, our current findings suggested that RocA was a potent cGAS-STING agonist and had a promising potential in cancer immunotherapy, especially in NK cell-based immunotherapy.


Subject(s)
Benzofurans/pharmacology , Carcinoma, Non-Small-Cell Lung/immunology , Killer Cells, Natural/immunology , Lung Neoplasms/immunology , Nucleotidyltransferases/metabolism , Animals , Autophagy/drug effects , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , DNA, Mitochondrial/metabolism , Humans , Immunotherapy , Killer Cells, Natural/drug effects , Lung Neoplasms/pathology , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Signal Transduction
7.
Bioorg Chem ; 119: 105534, 2022 02.
Article in English | MEDLINE | ID: mdl-34894576

ABSTRACT

Fourteen previously undescribed diterpenoids, including an unusual diterpenoid (1) with a 9,10-seco-jatrophane skeleton, ten jatrophane-type diterpenoids (2-11), two lathyrane-type diterpenoids (12, 13), and an abietane-type diterpenoid (14), together with thirty-six known ones (15-50), were isolated from the whole plants of Euphorbia helioscopia L. The structures of the new isolates were characterized by spectroscopic methods, single-crystal X-ray diffraction analysis, and computational prediction of ECD and chemical shifts. Thirty-nine abundant diterpenoids were evaluated for their enhancement of NK cell-mediated killing of NSCLC cells. As a result, compounds 24, 33, and 41 were found to significantly enhance the killing activity of NK cells towards H1299-luci cells and A549-luci cells at the concentration of 2.5 µM.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Diterpenes/pharmacology , Euphorbia/chemistry , Killer Cells, Natural/metabolism , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Diterpenes/chemistry , Diterpenes/isolation & purification , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship
8.
Mediators Inflamm ; 2021: 8856326, 2021.
Article in English | MEDLINE | ID: mdl-33867859

ABSTRACT

Non-small-cell lung cancer (NSCLC) remains the most common malignancy with the highest morbidity and mortality worldwide. In our previous study, we found that a classic traditional Chinese medicine (TCM) formula Ze-Qi-Tang (ZQT), which has been used in the treatment of respiratory diseases for thousands of years, could directly inhibit the growth of human NSCLC cells via the p53 signaling pathway. In this study, we explored the immunomodulatory functions of ZQT. We found that ZQT significantly prolonged the survival of orthotopic lung cancer model mice by modulating the tumor microenvironment (TME). ZQT remarkably reduced the number of MDSCs (especially G-MDSCs) and inhibited their immunosuppressive activity by inducing apoptosis in these cells via the STAT3/S100A9/Bcl-2/caspase-3 signaling pathway. When G-MDSCs were depleted, the survival promotion effect of ZQT and its inhibitory effect on lung luminescence signal disappeared in tumor-bearing mice. This is the first study to illustrate the immunomodulatory effect of ZQT in NSCLC and the underlying molecular mechanism.


Subject(s)
Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Drugs, Chinese Herbal/pharmacology , Granulocytes/drug effects , Lung Neoplasms/drug therapy , Medicine, Chinese Traditional , Myeloid-Derived Suppressor Cells/drug effects , Animals , Calgranulin B/physiology , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Caspase 3/physiology , Cell Line, Tumor , Drugs, Chinese Herbal/therapeutic use , Granulocytes/pathology , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/pathology , Proto-Oncogene Proteins c-bcl-2/physiology , STAT3 Transcription Factor/physiology , Signal Transduction/drug effects , Tumor Microenvironment
9.
J Leukoc Biol ; 110(2): 315-325, 2021 08.
Article in English | MEDLINE | ID: mdl-33909909

ABSTRACT

Natural killer (NK) cells have a great potential in cancer immunotherapy. However, their therapeutic efficacy is clinically limited owing to cancer cell immune escape. Therefore, it is urgently necessary to develop novel method to improve the antitumor immunity of NK cells. In the present study, it was found that the natural product tanshinone IIA (TIIA) enhanced NK cell-mediated killing of non-small cell lung cancer (NSCLC) cells. TIIA in combination with adoptive transfer of NK cells synergistically suppressed the tumor growth of NSCLC cells in an immune-incompetent mouse model. Furthermore, TIIA significantly inhibited the tumor growth of Lewis lung cancer (LLC) in an immune-competent syngeneic mouse model, and such inhibitory effect was reversed by the depletion of NK cells. Moreover, TIIA increased expressions of ULBP1 and DR5 in NSCLC cells, and inhibition of DR5 and ULBP1 reduced the enhancement of NK cell-mediated lysis by TIIA. Besides, TIIA increased the levels of p-PERK, ATF4 and CHOP. Knockdown of ATF4 completely reversed the up-regulation of ULBP1 and DR5 by TIIA in all detected NSCLC cells, while knockdown of CHOP only partly reduced these enhanced expressions in small parts of NSCLC cells. These results demonstrated that TIIA could increase the susceptibility of NSCLC cells to NK cell-mediated lysis by up-regulating ULBP1 and DR5, suggesting that TIIA had a promising potential in cancer immunotherapy, especially in NK cell-based cancer immunotherapy.


Subject(s)
Abietanes/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Cytotoxicity, Immunologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Intracellular Signaling Peptides and Proteins/genetics , Killer Cells, Natural/drug effects , Killer Cells, Natural/physiology , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Animals , Biomarkers , Carcinoma, Non-Small-Cell Lung , Cell Line, Tumor , Disease Models, Animal , GPI-Linked Proteins/genetics , Humans , Lung Neoplasms , Mice , Xenograft Model Antitumor Assays
10.
Pharm Biol ; 59(1): 47-53, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33399495

ABSTRACT

CONTEXT: Therapeutic benefits of immunotherapy are restricted by cancer immune-resistance mechanisms. Rediocide-A (Red-A), a natural product extracted from Traditional Chinese Medicine, is a promising agent to battle against cancer which acts as an immune checkpoint inhibitor. OBJECTIVE: To investigate the effect of Red-A on NK-cell tumouricidal activity. MATERIALS AND METHODS: NK cells were co-cultured with A549 or H1299 cells and treated with 10 or 100 nM Red-A for 24 h. Cells treated with 0.1% dimethyl sulphoxide (DMSO) was employed as vehicle control. NK cell-mediated cytotoxicity was detected by biophotonic cytotoxicity and impedance assay. Degranulation, granzyme B, NK cell-tumour cell conjugates and ligands profiling were detected by flow cytometry. Interferon-γ (IFN- γ) production was assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS: Red-A increased NK cell-mediated lysis of A549 cells by 3.58-fold (21.86% vs. 78.27%) and H1299 cells by 1.26-fold (59.18% vs. 74.78%), compared to vehicle control. Granzyme B level was increased by 48.01% (A549 cells) and 53.26% (H1299 cells) after 100 nM Red-A treatment. INF-γ level was increased by 3.23-fold (A549 cells) and 6.77-fold (H1299 cells) after 100 nM Red-A treatment. Red-A treatment down-regulated the expression level of CD155 by 14.41% and 11.66% in A549 cells and H1299 cells, respectively, leading to the blockade of tumour immuno-resistance to NK cells. CONCLUSIONS: Red-A overcomes immuno-resistance of NSCLCs to NK cells by down-regulating CD155 expression, which shows the possibility of developing checkpoint inhibitors targeting TIGIT/CD155 signalling to overcome immuno-resistance of cancer cells.


Subject(s)
Antineoplastic Agents/administration & dosage , Diterpenes/administration & dosage , Drug Delivery Systems/methods , Immune Checkpoint Inhibitors/administration & dosage , Killer Cells, Natural/drug effects , Macrolides/administration & dosage , Receptors, Virus/antagonists & inhibitors , A549 Cells , Cell Survival/drug effects , Cell Survival/immunology , Humans , Killer Cells, Natural/immunology , Receptors, Virus/biosynthesis , Receptors, Virus/immunology
11.
J Cell Mol Med ; 25(6): 2900-2908, 2021 03.
Article in English | MEDLINE | ID: mdl-33506637

ABSTRACT

Lung cancer is the leading cause of cancer-related death worldwide, and non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer diagnoses. As an ancient therapy, moxibustion has been used to treat cancer-related symptoms in clinical practice. However, its antitumour effect on NSCLC remains largely unexplored. In the present study, a Lewis lung cancer (LLC) xenograft tumour model was established, and grain-sized moxibustion (gMoxi) was performed at the acupoint of Zusanli (ST36). Flow cytometry and RNA sequencing (RNA-Seq) were used to access the immune cell phenotype, cytotoxicity and gene expression. PK136, propranolol and epinephrine were used for natural killer (NK) cell depletion, ß-adrenoceptor blockade and activation, respectively. Results showed that gMoxi significantly inhibited LLC tumour growth. Moreover, gMoxi significantly increased the proportion, infiltration and activation of NK cells, whereas it did not affect CD4+ and CD8+ T cells. NK cell depletion reversed gMoxi-mediated tumour regression. LLC tumour RNA-Seq indicated that these effects might be related to the inhibition of adrenergic signalling. Surely, ß-blocker propranolol clearly inhibited LLC tumour growth and promoted NK cells, and gMoxi no longer increased tumour regression and promoted NK cells after propranolol treatment. Epinephrine could inhibit NK cell activity, and gMoxi significantly inhibited tumour growth and promoted NK cells after epinephrine treatment. These results demonstrated that gMoxi could promote NK cell antitumour immunity by inhibiting adrenergic signalling, suggesting that gMoxi could be used as a promising therapeutic regimen for the treatment of NSCLC, and it had a great potential in NK cell-based cancer immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Immunomodulation , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Moxibustion , Signal Transduction , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Cytotoxicity, Immunologic , Disease Models, Animal , Humans , Immunophenotyping , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Lymphocyte Activation , Male , Mice , Moxibustion/methods , Receptors, Adrenergic/metabolism , Xenograft Model Antitumor Assays
12.
Pharm Biol ; 58(1): 357-366, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32356467

ABSTRACT

Context: Natural killer (NK) cells can eliminate malignant cells and play a vital role in immunosurveillance. Administration of natural compounds represents a promising approach for antitumor immunotherapy, which may enhance the NK cell activity via multiple mechanisms.Objective: Establishing approaches to evaluate the effect of select natural products on NK cell-mediated cytotoxicity.Materials and methods: We selected a natural product library containing 2880 pure compounds, which was provided by the National Centre for Drug Screening of China. 0.1% DMSO was employed as a negative control, and 100 U/mL human recombinant IL-2 was employed as a positive control. To evaluate the % of tumour cells which were killed by NK cells, expanded NK cells were co-cultured with tumour cells and then treated with natural products at the concentration of 10 µM. After 24-h co-incubation, luminescent signal was detected and percent lysis was calculated.Results: We report on the results of a three-round high-throughput screening effort that identified 20-deoxyingenol 3-angelate (DI3A) and its analogue ingenol 3-angelate (I3A) as immuno enhancers which boosts NK cell-mediated killing of non-small cell lung cancer cells (NSCLCs). Biophotonic cytotoxicity assay and calcein release assay were used as two well-established NK cell cytotoxicity detection assays to validate the immuno-enhancing effects of DI3A and I3A, which was achieved by increasing degranulation and interferon-gamma secretion of NK cells.Conclusions: Our newly established ATP-based method was a valuable and information-rich screening tool to investigate the biological effects of natural products on both NK cells and tumour cells.


Subject(s)
Biological Products/toxicity , High-Throughput Screening Assays/methods , Killer Cells, Natural/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Coculture Techniques , Dose-Response Relationship, Drug , Humans , Interleukin-2/immunology , Interleukin-2/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism
13.
J Cell Mol Med ; 24(6): 3282-3291, 2020 03.
Article in English | MEDLINE | ID: mdl-32048814

ABSTRACT

Non-small-cell lung cancer (NSCLC) has become the most lethal human cancer because of the high rate of metastasis. Hence, clarifying the molecular mechanism underlying NSCLC metastasis is very important to improve the prognosis of patients with NSCLC. Long non-coding RNAs (LncRNAs) are a class of RNA molecules longer than 200 nucleotides, which can participate in diverse biological processes. About 18% of human LncRNAs were recently found to be associated with tumours. Many studies indicated that aberrant expression of LncRNAs played key roles in the progression and metastasis of NSCLC. According to the function in tumours, LncRNAs can be divided into two classes: oncogenic LncRNAs and tumour-suppressor LncRNAs. In this review, we summarized the main molecular mechanism of LncRNAs regulating NSCLC metastasis, including three aspects: (a) LncRNAs interact with miRNAs as ceRNAs; (b) LncRNAs bind with target proteins; and (c) LncRNAs participate in the transduction of different signal pathways. Then, LncRNAs can exert their function to regulate the metastasis of NSCLC through influencing the progression of epithelial-mesenchymal transition (EMT) and the properties of cancer stem cell (CSC). But, it is necessary to do some further research to demonstrate the LncRNAs particular regulatory mechanism of inhibiting the metastasis of NSCLC and explore new drugs targeting LncRNAs.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , MicroRNAs/genetics , Neoplasm Metastasis/genetics , RNA, Long Noncoding/genetics , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Epithelial-Mesenchymal Transition/physiology , Gene Expression Regulation, Neoplastic/genetics , Genes, Tumor Suppressor , Humans , Lung Neoplasms/genetics , Neoplastic Stem Cells/pathology , Signal Transduction/genetics
14.
Front Neurosci ; 14: 596780, 2020.
Article in English | MEDLINE | ID: mdl-33633527

ABSTRACT

BACKGROUND AND PURPOSE: Neuropathic pain is the typical symptom of brachial plexus root avulsion (BPRA), and no effective therapy is currently available. Electroacupuncture (EA), as a complementary and alternative therapy, plays a critical role in the management of pain-associated diseases. In the present study, we aimed to reveal the peripheral immunological mechanism of EA in relieving the pain of BPRA through the IL-17-CD4+ T lymphocyte-ß-endorphin axis. METHODS: After receiving repeated EA treatment, the pain of BPRA in rats along with the expressions of a range of neurotransmitters, the contents of inflammatory cytokines, and the population of lymphocytes associated were investigated. CD4+ T lymphocytes were either isolated or depleted with anti-CD4 monoclonal antibody. The titers of IL-17A, interferon-γ (IFN-γ), and ß-endorphin were examined. The markers of T lymphocytes, myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), macrophages, and natural killer (NK) cells were assessed. The activation of the nuclear transcription factor κB (NF-κB) signaling pathway was tested. RESULTS: The pain of BPRA was significantly relieved, and the amount of CD4+ T lymphocytes was increased after EA treatment. The release of ß-endorphin was up-regulated with the up-regulation of IL-17A in CD4+ T lymphocytes. The titer of IL-17A was enhanced, leading to an activated NF-κB signaling pathway. The release of ß-endorphin and the analgesic effect were almost completely abolished when CD4+ T lymphocytes were depleted. CONCLUSION: We, for the first time, showed that the neuropathic pain caused by BPRA was effectively relieved by EA treatment via IL-17-CD4+ T lymphocyte-ß-endorphin mediated peripheral analgesic effect, providing scientific support for EA clinical application.

15.
Front Pharmacol ; 10: 1333, 2019.
Article in English | MEDLINE | ID: mdl-31780946

ABSTRACT

Background: The tumor microenvironment (TME) has a deep influence on cancer progression and has become into a new target for cancer treatment. In our previous study, we found that Yu-Ping-Feng (YPF), an ancient Chinese herbal decoction, significantly inhibited the Lewis lung cancer (LLC) tumor growth in a subcutaneous xenograft tumor model, and prolonged the survival of tumor-bearing mice. But the regulation of Yu-Ping-Feng on tumor microenvironment is unknown. Methods: To access the effect of Yu-Ping-Feng on non-small cell lung cancer, an orthotopic luciferase stably expressed Lewis lung cancer tumor model was established on C57BL/6 mice, and then the survival and the tumor growth were evaluated. To address the tumor microenvironment immune regulation, the percentages of CD4+ T cells, CD8+ T cells, natural killer cells (NK), regulatory T cells (Treg), macrophages, and myeloid-derived suppressor cells (MDSC) in spleens and tumor tissues, the macrophage polarization and CD4+ T cell cytotocixity were analyzed by flow cytometry, biophotonic cell killing activity assay, real-time PCR and western-blot. Results: Yu-Ping-Feng significantly prolonged orthotopic lung tumor-bearing mouse survival, and increased the percentages of CD4+ T cell and M1 macrophages and the cytotoxicity of CD4+ T cells. Yu-Ping-Feng significantly enhanced macrophage-mediated lysis of LLC in a concentration-dependent manner, and had no effect on CD4+ T cell-mediated lysis of LLC, but significantly increased CD4+ T cell-mediated lysis after co-incubated with macrophages. In addition, Yu-Ping-Feng induced M1 macrophage polarization through promoting the phosphorylation of STAT1. Conclusion: Yu-Ping-Feng induced M1 macrophages polarization, and then activated CD4+ T lymphocytes, resulting in killing of LLC cells. Yu-Ping-Feng was a potent regulator of M1 macrophage polarization and might have a promising application in tumor immunotherapy.

16.
J Ethnopharmacol ; 234: 180-188, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30660711

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ze-Qi-Tang (ZQT), a classic Chinese herbal formula, has been for over thousand years used for the treatment of several respiratory ailments like cough, asthma, hydrothorax and lung cancer. AIM OF STUDY: Cumulative literature on ZQT herbal formula reveals that its several constituent components are potent inducer of apoptosis in different cancer cells. However, the activity of ZQT against non-small-cell-lung cancer (NSCLC) has not been previously examined. The aim of the study is to investigate the molecular mechanism of ZQT on NSCLC cells. MATERIALS AND METHODS: Cell growth were determined by CCK-8 and colony formation assay. Induction of cellular apoptosis or arrest of cell cycle were determined by flow cytometric analysis using annexin V/ propidium iodide, Hoechst 33342 or TUNEL staining method. In some assay p53 activity of NSCLC ( A549 and H460) cells were blocked with pifithrin-a, prior to treatment with ZQT. The level of expression of cell cycle and apoptosis related marker proteins were estimated by western blot. The anticancer activity of ZQT in vivo were monitored in nude mice that were induced with tumor by subcutaneous inoculation of A549 cells and then treated by ZQT(100 mg/kg,200 mg/kg,400 mg/kg) gavaging for 30 days. Mice' body weight and tumor volume were measured weekly. The survival carve was recorded. Apoptosis from mice' tissue was observed by TUNEL assay. Pathological histology of liver, kidney and heart were detected by H&E staining, and its functions were tested by ELISA. RESULTS: Dose- and time-dependent inhibition of proliferation of NSCLC ( A549 and H460) cells by ZQT therapy along with induction of cell cycle arrest at G0/G1 phase were observed. The arrest of cell cycle arrest and inhibition of cellular proliferation were associated with up regulation of p53 along with down regulation of Cyclin B1 and Cdk2 indicating a mitochondrial related induction of apoptosis with ZQT. A reversal of ZQT-induced apoptosis and G0/G1 arrest was observed with pifithrin-a pretreatment. ZQT was also found to suppress the progression of tumor growth in mouse xenograft models and prolong survival. In addition, no hepato- or nephro- or cardio-toxicity with ZQT treatment were detected in mice. CONCLUSION: These findings suggest that the ZQT formula inhibits the growth of NSCLC cells and is a potential agent of complementary and alternative treatment for lung cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Drugs, Chinese Herbal/pharmacology , Lung Neoplasms/drug therapy , A549 Cells , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/toxicity , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/toxicity , Humans , Lung Neoplasms/pathology , Male , Medicine, Chinese Traditional/methods , Mice , Mice, Nude , Time Factors , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
17.
Autophagy ; 14(10): 1831-1844, 2018.
Article in English | MEDLINE | ID: mdl-29969944

ABSTRACT

Targeting macroautophagy/autophagy is a novel strategy in cancer immunotherapy. In the present study, we showed that the natural product rocaglamide (RocA) enhanced natural killer (NK) cell-mediated lysis of non-small cell lung cancer (NSCLC) cells in vitro and tumor regression in vivo. Moreover, this effect was not related to the NK cell recognition of target cells or expressions of death receptors. Instead, RocA inhibited autophagy and restored the level of NK cell-derived GZMB (granzyme B) in NSCLC cells, therefore increasing their susceptibility to NK cell-mediated killing. In addition, we further identified that the target of RocA was ULK1 (unc-51 like autophagy activating kinase 1) that is required for autophagy initiation. Using firefly luciferase containing the 5´ untranslated region of ULK1, we found that RocA inhibited the protein translation of ULK1 in a sequence-specific manner. Taken together, RocA could block autophagic immune resistance to NK cell-mediated killing, and our data suggested that RocA was a promising therapeutic candidate in NK cell-based cancer immunotherapy.


Subject(s)
Autophagy , Benzofurans/pharmacology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Killer Cells, Natural/immunology , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Animals , Autophagy/drug effects , Autophagy-Related Protein-1 Homolog/metabolism , Cell Degranulation/drug effects , Granzymes/metabolism , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/physiology , Male , Mice, Inbred C57BL , Mice, SCID , Models, Biological , Protein Biosynthesis , Receptors, Death Domain/metabolism
18.
Br J Cancer ; 117(11): 1621-1630, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29024939

ABSTRACT

BACKGROUND: The identification of bioactive compounds from Chinese medicine plays a crucial role in the development of novel reagents against non-small lung cancer (NSCLC). METHODS: High throughput screening assay and analyses of cell growth, cell cycle, apoptosis, cDNA microarray, BrdU incorporation and gene expression were performed. RESULTS: Ailanthone (Aila) suppressed NSCLC cell growth and colony formation in vitro and inhibited NSCLC tumour growth in subcutaneously xenografted and orthotopic lung tumour models, leading to prolonged survival of tumour-bearing mice. Moreover, Aila induced cell cycle arrest in a dose-independent manner but did not induce apoptosis in all NSCLC cells. Furthermore, 1222 genes were differentially expressed upon Aila administration, which were involved in 21 signal pathways, such as DNA replication. In addition, Aila dose-dependently decreased BrdU incorporation and downregulated the expression of replication protein A1 (RPA1). CONCLUSIONS: Aila inhibited the growth of NSCLC cells through the repression of DNA replication via downregulating RPA1, rather than through cell cycle arrest and apoptosis. Our findings suggested that Aila could be used as a promising therapeutic candidate for NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , DNA Replication/drug effects , Lung Neoplasms/drug therapy , Quassins/pharmacology , Replication Protein A/genetics , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Mice , Xenograft Model Antitumor Assays
19.
Sci Rep ; 7: 45266, 2017 03 24.
Article in English | MEDLINE | ID: mdl-28338101

ABSTRACT

NKG2D is a major activating receptor of NK cells and plays a critical role in tumor immunosurveillance. NKG2D expression in NK cells is inhibited by the histone deacetylase (HDAC) inhibitor valproic acid (VPA) and enhanced by the narrow-spectrum HDAC inhibitor entinostat. We previously demonstrated that entinostat enhanced NKG2D transcription by increasing acetylation of Histones H3 and H4. However, the mechanism by which VPA reduces NKG2D expression in NK cells is not known. We have also shown that NKG2D transcription is regulated by STAT3 phosphorylation. In this study, we investigated regulation of NKG2D expression in NK cells by VPA and entinostat by assessing protein expression, phosphorylation, and interaction of HDACs and STAT3. We find that VPA selectively inhibits STAT3 tyrosine705 phosphorylation, but entinostat does not. STAT3 complexes with HDAC3, and HDAC3 inhibition represses STAT3 phosphorylation and therefore NKG2D expression. NK cells from STAT3 wild-type mice downregulate NKG2D in response to VPA, but not NK cells from STAT3 knockout mice. These results show that VPA is a potent inhibitor of STAT3 phosphorylation and demonstrate that histone acetylation and STAT3 tyrosine705 phosphorylation cooperate in regulating NKG2D expression in NK cells.


Subject(s)
Histone Deacetylases/metabolism , Killer Cells, Natural/metabolism , NK Cell Lectin-Like Receptor Subfamily K/genetics , STAT3 Transcription Factor/metabolism , Valproic Acid/pharmacology , Acetylation , Benzamides/pharmacology , Cell Line , Cell Survival/drug effects , Gene Expression Regulation/drug effects , Humans , Killer Cells, Natural/cytology , Killer Cells, Natural/drug effects , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Phosphorylation/drug effects , Pyridines/pharmacology , STAT3 Transcription Factor/chemistry , Signal Transduction , Tyrosine/metabolism
20.
Mol Immunol ; 83: 23-32, 2017 03.
Article in English | MEDLINE | ID: mdl-28092804

ABSTRACT

The IFN-γ production is crucial for NK cell-mediated lysis of cancer cells. Thus increasing the IFN-γ production by NK cells may be an ideal strategy to improve their tumoricidal effect. Since the focus on new drug development has shifted towards natural products, limited information is out there about natural products that enhance the IFN-γ production by NK cells. In this study, through a high-throughput screening, we have identified a natural product ingenol 3,20 dibenzoate (IDB), an activator of tumor suppressor protein kinase C (PKC) isozymes, could increase the IFN-γ production and degranulation by NK cells, especially when NK cells were stimulated by non-small lung cancer (NSCLC) cells. IDB also significantly enhanced the NK cell-mediated lysis of NSCLC cells. Furthermore, PKC inhibitor, sotrastaurin abrogated IDB-induced IFN-γ production, degranulation and cytotoxicity, but did not affect IFN-γ production by NK cells without IDB treatment and NSCLC cell stimulation. The IFN-γ neutralization reversed the IDB-induced enhancement of NK cell mediated killing. In conclusion, our study indicated that IDB enhanced NK cell-mediated lysis of NSCLC cells is dependent on specific PKC mediated IFN-γ production and degranulation. Thus, IDB may have a promising application in clinic for NK cell-based cancer immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Cytotoxicity, Immunologic/drug effects , Diterpenes/pharmacology , Killer Cells, Natural/drug effects , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/immunology , Enzyme Activation/drug effects , High-Throughput Screening Assays , Humans , Interferon-gamma/biosynthesis , Killer Cells, Natural/immunology , Lung Neoplasms/immunology , Protein Kinase C/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...