Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 3(9): 3900-6, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21845275

ABSTRACT

TiO(2) nanoparticles with diameter <10 nm were synthesized by a facile, non-hydrothermal method at low temperature. A porous TiO(2) film electrode consisting of the obtained small TiO(2) nanoparticles and commercial TiO(2) nanoparticles without any organic binder was prepared at low temperature. The photovoltaic performance of the solar cell based on the TiO(2) electrode was investigated by the current-voltage and electrochemical impedance spectra. All the experimental results indicate that the addition amount of the small TiO(2) nanoparticles in the binder-free paste affects the photovoltaic performance of the photoelectrode greatly. The overall energy conversion efficiency of the optimized binder-free photoelectrode achieves 3.53% without high-temperature sintering. Additionally, the performance of the small particles derived from this facile method can be comparable with that of small ones obtained from traditionally hydrothermal method, indicating the small particles in our study can be applied to flexible dye-sensitized solar cells. And the present low-temperature preparation of photoelectrode containing small TiO(2) nanoparticles shows an encouraging performance on both conductive glass and plastic substrates and could be suited in the industrial and large-scale application due to its low energy cost and relatively high conversion efficiency.


Subject(s)
Coloring Agents/chemistry , Metal Nanoparticles/chemistry , Solar Energy , Titanium/chemistry , Cold Temperature , Dielectric Spectroscopy , Electrodes , Metal Nanoparticles/ultrastructure , Particle Size
2.
J Hazard Mater ; 178(1-3): 152-6, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20138426

ABSTRACT

A novel photodegradable polyvinyl chloride (PVC)-vitamin C (VC)-TiO(2) nano-composite film was prepared by embedding VC modified nano-TiO(2) photocatalyst into the commercial PVC plastic. The solid-phase photocatalytic degradation behavior of PVC-VC-TiO(2) nano-composite film under UV light irradiation was investigated and compared with those of the PVC-TiO(2) film and the pure PVC film, with the aid of UV-Vis spectroscopy, scanning electron microscopy (SEM), weight loss monitoring, and X-ray diffraction spectra (XRD). The results show that PVC-VC-TiO(2) nano-composite film has a high photocatalytic activity; the photocatalytic degradation rate of it is two times higher than that of PVC-TiO(2) film and fifteen times higher than that of pure PVC film. The optimal mass ratio of VC to TiO(2) is found to be 0.5. The mechanism of enhancing photocatalytic activity is attributed to the formation of a Ti(IV)-VC charge-transfer complex with five-member chelate ring structure and a rapid photogenerated charge separation is thus achieved.


Subject(s)
Ascorbic Acid/chemistry , Polyvinyl Chloride/chemistry , Titanium/chemistry , Ascorbic Acid/radiation effects , Catalysis , Microscopy, Electron, Scanning , Nanotechnology , Photochemistry , Polyvinyl Chloride/radiation effects , Spectrophotometry, Ultraviolet , Titanium/radiation effects , Ultraviolet Rays , X-Ray Diffraction
3.
J Mass Spectrom ; 41(10): 1378-85, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17013825

ABSTRACT

A comparison of slurry sampling (SS)-ETV-ICP-MS and slurry nebulization (SN)-ICP-MS for direct determination of trace impurities in titanium dioxide powder is made. The particle size effect, matrix effect and analytical characteristics of SSETV-ICP-MS and SN-ICP-MS are compared. The results have shown that SSETV-ICP-MS has a lower particle size effect and matrix effect compared to SN-ICP-MS. The analytical performance of the two methods reveals that SSETV-ICP-MS and SN-ICP-MS have similar relative detection limits (in the nanogram per liter level); however, the former has a lower absolute detection limit than the latter. Although the precision for SSETV-ICP-MS is a little worse than that for SN-ICP-MS, it is still acceptable for real sample analysis. The two methods were successfully applied for the determination of trace impurities in titanium dioxide powder samples with particle sizes of less than 50 nm, but only SSETV-ICP-MS could be applied for the determination of trace impurities in titanium dioxide powder samples with a particle size of 1 microm.

SELECTION OF CITATIONS
SEARCH DETAIL
...