Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Biol Med (Maywood) ; 248(23): 2449-2463, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38073524

ABSTRACT

In clinical trials, rhubarb extract (Rb) was demonstrated to efficiently alleviate constipation. We would like to find out the underlying mechanism of rhubarb relieving constipation. However, there are few studies on the effects of rhubarb on colonic mucus secretion and constipation. The aim of this study was to investigate the effects of rhubarb on colonic mucus secretion and its underlying mechanism. The mice were randomly divided into four groups. Group I was the control group and Group II was the rhubarb control group, with Rb (24 g/kg body weight [b.w.]) administered through intragastric administration for three days. Group III mice were given diphenoxylate (20 mg/kg b.w.) for five days via gavage to induce constipation. Group IV received diphenoxylate lasting five days before undergoing Rb administration for three days. The condition of the colon was evaluated using an endoscope. Particularly, the diameter of blood vessels in the colonic mucosa expanded considerably in constipation mice along with diminishing mucus output, which was in line with the observation via scanning electron microscope (SEM) and transmission electron microscope (TEM). We also performed metagenomic analysis to reveal the microbiome related to mucin gene expression level referring to mucin secretion. In conclusion, Rb relieves constipation by rebuilding mucus homeostasis and regulating the microbiome.


Subject(s)
Rheum , Mice , Animals , Diphenoxylate/metabolism , Diphenoxylate/pharmacology , Diphenoxylate/therapeutic use , Mucins/metabolism , Mucins/pharmacology , Mucins/therapeutic use , Constipation/drug therapy , Constipation/metabolism , Colon/metabolism , Mucus/metabolism , Homeostasis
2.
Immun Inflamm Dis ; 11(9): e1005, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37773693

ABSTRACT

Plasmacytoid dendritic cells (pDCs), a subtype of DC, possess unique developmental, morphological, and functional traits that have sparked much debate over the years whether they should be categorized as DCs. The digestive system has the greatest mucosal tissue overall, and the pDC therein is responsible for shaping the adaptive and innate immunity of the gastrointestinal tract, resisting pathogen invasion through generating type I interferons, presenting antigens, and participating in immunological responses. Therefore, its alleged importance in the gut has received a lot of attention in recent years, and a fresh functional overview is still required. Here, we summarize the current understanding of mouse and human pDCs, ranging from their formation and different qualities compared with related cell types to their functional characteristics in intestinal disorders, including colon cancer, infections, autoimmune diseases, and intestinal graft-versus-host disease. The purpose of this review is to convey our insights, demonstrate the limits of existing research, and lay a theoretical foundation for the rational development and use of pDCs in future clinical practice.

3.
Microorganisms ; 11(8)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37630578

ABSTRACT

(1) Background: Depression is the most prevalent psychiatric symptom present among individuals of all ages and backgrounds, impacting an estimated 300 million people globally. Therefore, it demands a significant amount of attention when it comes to managing depression. A growing amount of data reveal that probiotics and fatty acids could be beneficial to depression. However, the opposing position maintains that they have no influence on depression. A network meta-analyses of existing datasets aid in the estimation of comparative efficacy as well as in achieving an understanding of the relative merits of different therapies. The purpose of this study was to investigate the current evidence for probiotic or fatty acid depression therapy and to establish a practical alternative for depression patients using a meta-analysis and metagenomic data from a Wistar-Kyoto (WKY) depressed rat model. (2) Methods: Probiotic data were obtained from seven randomized controlled trial studies (n = 394), and fatty acid data were obtained from 24 randomized controlled trial studies (n = 1876). Meanwhile, a metagenomics analysis of data on animal gut flora was also applied to validate the preceding evidence. (3) Results: The fatty acid studies were separated into three sections based on the duration of probiotic delivery: ≤8 weeks, 9-12 weeks, and >12 weeks. The results were as follows: for ≤8 weeks, MD = -1.65 (95% CI: -2.96--0.15), p = 0.01; for 9-12 weeks, MD = -2.22 (95% CI: -3.03--1.22), p < 0.001; for >12 weeks, MD = -1.23 (95% CI: -2.85-0.39), p = 0.14. Regarding the probiotics, the meta-analysis revealed MD = -2.19 (95% CI: -3.38--2.43), p < 0.001. The research presented herein illustrates that probiotics and fatty acids may successfully lower depression scores. Additionally, the probiotics were drastically reduced in the WKY rats. (4) Conclusions: According to the data, a depression intervention utilizing probiotics outperformed the control, implying that the use of probiotics and fatty acids may be a successful strategy for depression treatment.

4.
J Biomed Mater Res B Appl Biomater ; 110(8): 1789-1795, 2022 08.
Article in English | MEDLINE | ID: mdl-35179806

ABSTRACT

Betulinic acid (BA), a natural pentacyclic lupine-type triterpene, has shown its prominent efficiency on the selective antitumor activity. However, its poor water solubility and bioavailability have limited its application. Herein, targeting nanoparticles were prepared to improve BA-based liposome (BL)'s restricted chemotherapeutic efficacy. Multi-layers membranes from the cancer cells were added as highly penetrative targeting ligands to functionalize the BA-based liposomes. In vitro experiments including the MTT assay and the fluorescence imaging of live/dead staining were adopted to prove its great inhibition in the growth of tumor cells. And it manifests that the antitumor efficacy of BL coated with cell membranes (BLCM) achieves nearly 4.3 times as that of BL under the same conditions in the MTT experiments. In addition, the fluorescence imaging stained with DAPI-FITC was applied to prove the targeting positioning effects on the BLCM. In a nutshell, the nanomedicine has good targeting antitumor efficacy and has great potential in being applied for the personalized cancer clinical treatment.


Subject(s)
Nanoparticles , Triterpenes , Cell Line, Tumor , Liposomes , Pentacyclic Triterpenes/pharmacology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Betulinic Acid
5.
Front Cell Dev Biol ; 10: 1102978, 2022.
Article in English | MEDLINE | ID: mdl-36704202

ABSTRACT

The intestine is a powerful digestive system and one of the most sophisticated immunological organs. Evidence shows that tuft cells (TCs), a kind of epithelial cell with distinct morphological characteristics, play a significant role in various physiological processes. TCs can be broadly categorized into different subtypes depending on different molecular criteria. In this review, we discuss its biological properties and role in maintaining homeostasis in the gastrointestinal tract. We also emphasize its relevance to the immune system and highlight its powerful influence on intestinal diseases, including inflammations and tumors. In addition, we provide fresh insights into future clinical diagnostic and therapeutic strategies related to TCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...