Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 366: 121803, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39002458

ABSTRACT

In this work, a novel polyurethane carrier modified with biochar and tourmaline/zeolite powder at ratio of 1:1 and 1:2 was developed to promote the formation of biofilms and the synergy of overall bacterial activity for Partial Denitrification/Anammox to treat low-nitrogen contaminated surface water. Based on the batch experiment, the modified biocarrier, BTP2 (biochar: tourmaline = 2: 1), exhibited the highest total nitrogen removal efficiency (83.63%) under influent total nitrogen of 15 mg/L and COD/NO3- of 3. The dense biofilm was formed in inner side of biocarrier owing to the increased surface roughness and various functional groups suggested by scanning electron microscopy and Fourier-transform infrared analysis. The EPS content increased from 200.15 to 220.26 mg/g VSS in BTP2 system. Besides, the rapid NH4+ capture and organics release of the modified carrier fueled the growth of anammox and denitrification bacteria, with the activity of 2.13 ± 0.52 mg N/gVSS/h and 6.70 ± 0.52 mg N/gVSS/h (BTP2). High-throughput sequencing unraveled the increased abundances of Candidatus_Competibacter (0.82%), Thauera (0.60%) and Candidatus_Brocadia (0.55%) which was responsible for the synergy of incomplete reduction of NO3- to NO2- and NH4+ oxidation. Overall, this study provided a valid and simple-control guide for biofilm formation towards rapid enrichment and great collaboration of Anammox and denitrification bacteria.

2.
Chemosphere ; 361: 142526, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851507

ABSTRACT

The DEnitrifying AMmonium OXidation (DEAMOX) has been proven to be a promising process treating contaminated surface water containing ammonia and nitrate, while the enrichment of the slow-growing anammox bacteria (AnAOB) remains a challenge. In this study, a novel polyurethane-adhesion vermiculite/tourmaline (VTP) modified carrier was developed to achieve effective enrichment of AnAOB. The results demonstrated that the VTP-1 (vermiculite: tourmaline = 1:1) system exhibited the greatest performance with the total nitrogen removal efficiency reaching 87.6% and anammox contributing 63% to nitrogen removal. Scanning electron microscope analysis revealed the superior biofilm structure of the VTP-1 carrier, providing attachment for AnAOB. The addition of VTP-1 promoted the secretion of EPS (extracellular polymeric substances) by microorganisms, which increased to 85.34 mg/g VSS, contributing to the aggregation of anammox cells. The favorable substrate microenvironment created by NH4+ adsorption and NO2- supply via partial denitrification process facilitated the growth of AnAOB. The relative abundance of Candidatus Brocadia and Thauera increased from 0.04% to 0.3%-1.03% and 2.06% in the VTP-1 system, respectively. This study sheds new light on the anammox biofilm formation and provides a valid approach to initiate the DEAMOX process for low nitrogen polluted water treatment.


Subject(s)
Aluminum Silicates , Ammonium Compounds , Biofilms , Denitrification , Oxidation-Reduction , Ammonium Compounds/chemistry , Aluminum Silicates/chemistry , Bacteria/metabolism , Nitrogen/chemistry , Water Pollutants, Chemical , Ammonia/chemistry , Nitrates
SELECTION OF CITATIONS
SEARCH DETAIL
...