Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Saudi J Biol Sci ; 24(5): 996-1000, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28663694

ABSTRACT

Varroa destructor, a key biotic threat to the Western honey bee, has played a major role in colony losses over the past few years worldwide. Overuse of traditional acaricides, such as tau-fluvalinate and flumethrin, on V. destructor has only increased its tolerance to them. Therefore, the application of essential oils in place of traditional pesticides is an attractive alternative, as demonstrated by its high efficiency, lack of residue and tolerance resistance. To study the acaricidal activity of essential oils, we used clove oil (Syzygium aromaticum L.), a typical essential oil with a wide range of field applications, and examined its effects on the enzyme activities of Ca2+-Mg2+-ATPase, glutathione-S-transferase (GST) and superoxide dismutase (SOD) and its effects on the water-soluble protein content of V. destructor body extracts after exposure to 0.1 µl and 1.0 µl of clove oil for 30 min. Our results showed that the water-soluble protein content significantly decreased after the treatments, indicating that the metabolism of the mites was adversely affected. The bioactivity of GSTs increased significantly after a low dosage (0.1 µl) exposure but decreased at a higher dosage (1.0 µl), while the activities of SOD and Ca2+-Mg2+-ATPase were significantly elevated after treatments. These results suggest that the protective enzyme SOD and detoxifying enzymes Ca2+-Mg2+-ATPase and GST contributed to the stress reaction of V. destructor to the essential oils and that the detoxification ability of V. destructor via GST was inhibited at higher dosages. Our findings are conducive to understanding the physiological reactions of V. destructor to treatment with essential oils and the underlying mechanisms behind the acaricidal activities of these natural products.

2.
Appl Environ Microbiol ; 82(8): 2256-62, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26801569

ABSTRACT

Sacbrood virus(SBV) is one of the most destructive viruses in the Asian honeybee Apis cerana but is much less destructive in Apis mellifera In previous studies, SBV isolates infecting A. cerana(AcSBV) and SBV isolates infecting A. mellifera(AmSBV) were identified as different serotypes, suggesting a species barrier in SBV infection. In order to investigate this species isolation, we examined the presence of SBV infection in 318A. mellifera colonies and 64A. cerana colonies, and we identified the genotypes of SBV isolates. We also performed artificial infection experiments under both laboratory and field conditions. The results showed that 38A. mellifera colonies and 37A. cerana colonies were positive for SBV infection. Phylogenetic analysis based on RNA-dependent RNA polymerase (RdRp) gene sequences indicated that A. cerana isolates and most A. mellifera isolates formed two distinct clades but two strains isolated fromA. mellifera were clustered with theA. cerana isolates. In the artificial-infection experiments, AcSBV negative-strand RNA could be detected in both adult bees and larvae ofA. mellifera, although there were no obvious signs of the disease, demonstrating the replication of AcSBV inA. mellifera Our results suggest that AcSBV is able to infectA. melliferacolonies with low prevalence (0.63% in this study) and pathogenicity. This work will help explain the different susceptibilities ofA. cerana and A. melliferato sacbrood disease and is potentially useful for guiding beekeeping practices.


Subject(s)
Bees/virology , Genotype , RNA Viruses/classification , RNA Viruses/isolation & purification , Animals , Cluster Analysis , Phylogeny , RNA Viruses/genetics , RNA-Dependent RNA Polymerase/genetics , Sequence Analysis, DNA
3.
Vet Microbiol ; 177(1-2): 1-6, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25752367

ABSTRACT

Nosema ceranae and Deformed wing virus (DWV) are two of the most prevalent pathogens currently attacking Western honey bees, Apis mellifera, and often simultaneously infect the same hosts. Here we investigated the effect of N. ceranae and Deformed wing virus (DWV) interactions on infected honey bees under lab conditions and at different nutrition statuses. Our results showed that Nosema could accelerate DWV replication in infected bees in a dose-dependent manner at the early stages of DWV infection. When bees were restricted from pollen nutrition, inoculation with 1×10(4) and 1×10(5) spores/bee could cause a significant increase in DWV titer, while inoculation with 1×10(3) spores/bee did not show any significant effect on the DWV titer. When bees were provided with pollen, only inoculation with 1×10(5) spores/bee showed significant effect on DWV titer. However, our results also showed that the two pathogens did not act synergistically when the titer of DWV reached a plateau. This study suggests that the synergistic effect of N. ceranae and DWV is dosage- and nutrition-dependent and that the synergistic interactions between the two pathogens could have implications on honey bee colony losses.


Subject(s)
Bees/microbiology , Nosema/physiology , Viruses/classification , Animals , Host-Pathogen Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...