Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Water Res ; 261: 122020, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38971079

ABSTRACT

The transition metals redox rate limitations of spinel oxides during Fenton-like reactions hinder its efficient and sustainable treatment of actual wastewater. Herein, we propose to optimize the electronic structure of Co-Mn spinel oxide (CM) via sulfur doping and carbon matrix anchoring synergistically, enhancing the radicals-nonradicals Fenton-like processes for efficient water decontamination. Activating peroxymonosulfate (PMS) with optimised spinel oxide (CMSAC) achieved near-complete removal of ofloxacin (10 mg/L) within 6 min, showing 8.4 times higher efficiency than CM group. Significantly higher yields of SO4·- and high-valent metal species in CMSAC/PMS system provided exceptional resistance to co-existing anions, enabling efficient removal of various emerging contaminants in high salinity leachate. Specifically, sulfur coordination and carbon anchoring-induced oxygen vacancy synergistically improved the electronic structure and electron transfer efficiency of CMSAC, thus forming highly reactive Co sites and significantly reducing the energy barrier for Co(IV)=O generation. The reductive sulfur species facilitated the conversion of Co(III) to Co(II), thereby maintaining the stability of the catalytic activity of CMSAC. This work developed a synergistic optimization strategy to overcome the metals redox rate limitations of spinel oxides in Fenton-like reactions, providing deep mechanistic insights for designing Fenton-like catalysts suitable for practical applications.

2.
J Hazard Mater ; 465: 133144, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38056251

ABSTRACT

Over the past decade or so, microplastics (MPs) have received increasing attention due to their ubiquity and potential risk to the environment. Waste plastics usually end up in landfills. These plastics in landfills undergo physical compression, chemical oxidation, and biological decomposition, breaking down into MPs. As a result, landfill leachate stores large amounts of MPs, which can negatively impact the surrounding soil and water environment. However, not enough attention has been given to the occurrence and removal of MPs in landfill leachate. This lack of knowledge has led to landfills being an underestimated source of microplastics. In order to fill this knowledge gap, this paper collects relevant literature on MPs in landfill leachate from domestic and international sources, systematically summarizes their presence within Asia and Europe, assesses the impacts of landfill leachate on MPs in the adjacent environment, and particularly discusses the possible ecotoxicological effects of MPs in leachate. We found high levels of MPs in the soil and water around informal landfills, and the MPs themselves and the toxic substances they carry can have toxic effects on organisms. In addition, this paper summarizes the potential impact of MPs on the biochemical treatment stage of leachate, finds that the effects of MPs on the biochemical treatment stage and membrane filtration are more significant, and proposes some novel processes for MPs removal from leachate. This analysis contributes to the removal of MPs from leachate. This study is the first comprehensive review of the occurrence, environmental impact, and removal of MPs in leachate from landfills in Asia and Europe. It offers a comprehensive theoretical reference for the field, providing invaluable insights.

3.
J Hazard Mater ; 460: 132362, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37659237

ABSTRACT

Converting waste activated sludge into catalysts for the removal of antibiotics in water fulfils the dual purpose of waste-to-resource and hazardous pollution elimination. In this study, sludge-derived biochar (SDB) for efficient periodate (PI) activation was first prepared via one-step pyrolysis of potassium permanganate-polyhexamethylenebiguanide conditioned sludge without additional modification. The SDB (750 °C)-PI system degraded 100% ofloxacin (OFL, 41.5 µM) within 6 min and was almost undisturbed by inorganic ions or humic acids. The experimental results confirmed that the predominant role of reactive iodine species (RIS) and the auxiliary involvement of singlet oxygen (1O2) jointly contributed to the OFL degradation. Theoretical calculations further indicated that the synergy between Mn and N/O induced local charge redistribution and improved electron transfer capability of SDB, leading to the formation of electron-rich Mn sites and enhanced Mn(II)↔Mn(III)↔Mn(IV) redox to promote PI activation. More importantly, the enhanced adsorption and charge transfer of PI on the Mn site of the Mn-N/O-C structures induced the I-O bond stretching and the rapid generation of RIS. This study offered a cost-effective strategy for developing SDB-based catalysts, further advancing the comprehension of sludge management and the intricate mechanisms underlying RIS formation in PI-advanced oxidation processes.


Subject(s)
Iodine , Ofloxacin , Sewage
4.
J Hazard Mater ; 460: 132355, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37651937

ABSTRACT

Emerging contaminants (ECs) are commonly found in environmental media. Yet leachate from municipal solid waste incineration plants (MSWIPs), which can serve as a reservoir for various contaminants, including ECs, has received little investigation. To address this gap, 65 ECs were analyzed in the fresh leachate and biological effluent from three major MSWIPs in Shanghai. Results indicated that over half (56%) of the 65 ECs were detected in fresh leachate. Different ECs would be removed to varying degrees after biological treatment, including polycyclic aromatic hydrocarbons (PAHs) (65%), polybrominated diphenyl ethers (PBDEs) (51%), phthalate esters (PAEs) (36%), and organophosphorus pesticides (OPPs) (34%). Notably, for tetrabromobisphenol A (TBBPA), a PBDE substitute, only 2% was removed after biological treatment, while polychlorinated biphenyls (PCBs) were effectively removed at 83%. Water solubility and the octanol-water partition coefficient are key factors influencing the distribution and removal of ECs in leachate. the effluent will still contain refractory ECs even after the biological treatment. These residual ECs discharged to sewers can impact wastewater treatment plants or contaminate surface water and groundwater. These findings provide insights into the leachate contamination by ECs, their environmental fate, factors affecting their behavior, and potential environmental impacts.


Subject(s)
Incineration , Pesticides , Organophosphorus Compounds , Solid Waste , China , Water
5.
J Environ Manage ; 345: 118778, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37591105

ABSTRACT

Sodium dimethyl dithiocarbamate (SDD) is widely used for stabilizing heavy metals to minimize pollution from air pollution control (APC) residues derived from municipal solid waste incineration. However, the effect of environmental conditions on heavy metal leaching from SDD-stabilized APC residues remains unknown. Therefore, this study aimed to evaluate the durability of SDD-stabilized APC residues and determine the relationship between heavy metal leaching and environmental factors, including pH, temperature, and oxygen. The results revealed that accelerated SDD decomposition and the decline in durability of SDD-stabilized APC residues were caused by acidic and aerated conditions and temperatures above 40 °C. A decrease in pH from 12.25 to 4.69 increased the Cd and Pb concentrations in SDD-stabilized APC residue leachate from below detection (0.002 mg/L) to 1.32 mg/L and 0.04 mg/L to 3.79 mg/L, respectively. Heating at 100 °C for 2 d increased the Cd and Pb concentrations from below detection (0.002 mg/L and 0.01 mg/L) to 2.96 mg/L and 0.47 mg/L, respectively. Aeration for 5 d increased the Cd and Pb concentrations from below detection to 0.09 mg/L and 0.49 mg/L, respectively. The decline in durability was attributed to acid hydrolysis, thermal decomposition, and oxidative damage of SDD, resulting in breakage of the chelated sulfur-metal bond, which was confirmed by the decrease in the oxidizable fraction of heavy metals and the SDD content. This study improves the understanding of the factors contributing to the decline in durability of heavy metals in SDD-stabilized APC residues, which is important for ensuring the long-term stabilization and environmental safety of these residues.


Subject(s)
Air Pollution , Metals, Heavy , Refuse Disposal , Incineration , Refuse Disposal/methods , Solid Waste , Dimethyldithiocarbamate , Cadmium , Lead , Metals, Heavy/chemistry , Sodium , Coal Ash , Carbon
6.
Sci Total Environ ; 900: 165894, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37524176

ABSTRACT

Leachate from Municipal Solid Waste (MSW) incineration plants contains multiple antibiotics. However, current knowledge of antibiotics in such leachate is very limited compared to landfill leachate. In this study, the distribution, removal and ecological risks of 8 sulfonamides (SAs), 4 quinolones (FQs), and 4 macrolides (MLs) antibiotics in leachate from three MSW incineration plants in Shanghai were investigated. The results showed that 12 types of target antibiotics were detected at high concentrations (7737.3-13,758.7 ng/L) in the fresh leachate, exceeding the concentrations reported for landfill leachate. FQs were the dominant antibiotics detected in all three fresh leachates, accounting for >60 % of the total detected concentrations. The typical "anaerobic-anoxic/aerobic-anoxic/aerobic-ultrafiltration" treatment process removed the target antibiotics effectively (89.0 %-93.4 %), of which the anaerobic unit and the primary anoxic/aerobic unit were the most important antibiotic removal units. Biodegradation was considered to be the dominant removal mechanism, removing 78.11 %-92.37 % of antibiotics, whereas sludge adsorption only removed 1.02 %-10.89 %. Antibiotic removal was significantly correlated with leachate COD, pH, TN, and NH3-N, indicating that they may be influential factors for antibiotic removal. Ecological risk assessment revealed that ofloxacin (OFX) and enrofloxacin (EFX) in the treated leachate still posed high risks to algae and crustaceans. This research provides insights into the fate of antibiotics in leachate.


Subject(s)
Refuse Disposal , Water Pollutants, Chemical , Solid Waste/analysis , Incineration , Anti-Bacterial Agents , Water Pollutants, Chemical/analysis , China , Risk Assessment , Waste Disposal Facilities , Refuse Disposal/methods
7.
J Hazard Mater ; 438: 129437, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35810514

ABSTRACT

Conversion of sewage sludge to biochar for contaminants removal from water achieves the dual purpose of solid waste reuse and pollution elimination, in line with the concept of circular economy and carbon neutrality. However, the current understanding of sludge-derived biochar (SDB) for wastewater treatment is still limited, with a lack of summary regarding the effect of modification on the mechanism of SDB adsorption/catalytic removal aqueous contaminants. To advance knowledge in this aspect, this paper systematically reviews the recent studies on the use of (modified) SDB as adsorbents and in persulfate-based advanced oxidation processes (PS-AOPs) as catalysts for the contaminants removal from water over the past five years. Unmodified SDB not only exhibits stronger cation exchange and surface precipitation for heavy metals due to its nitrogen/mineral-rich properties, but also can provide abundant catalytic active sites for PS. An emphatic summary of how certain adsorption removal mechanisms of SDB or its catalytic performance in PS-AOPs can be enhanced by targeted regulation/modification such as increasing the specific surface area, functional groups, graphitization degree, N-doping or transition metal loading is presented. The interference of inorganic ions/natural organic matter is one of the unavoidable challenges that SDB is used for adsorption/catalytic removal of contaminants in real wastewater. Finally, this paper presents the future perspectives of SDB in the field of wastewater treatment. This review can contribute forefront knowledge and new ideas for advancing sludge treatment toward sustainable green circular economy.


Subject(s)
Sewage , Water Pollutants, Chemical , Adsorption , Charcoal/chemistry , Sewage/chemistry , Wastewater , Water , Water Pollutants, Chemical/chemistry
8.
J Hazard Mater ; 432: 128668, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35325861

ABSTRACT

In recent years, the application of biochar in the remediation of heavy metals (HMs) contaminated soil has received tremendous attention globally. We reviewed the latest research on the immobilization of soil HMs by biochar almost in the last 5 years (until 2021). The methods, effects and mechanisms of biochar and modified biochar on the immobilization of typical HMs in soil have been systematically summarized. In general, the HMs contaminating the soil can be categorized into two groups, the oxy-anionic HMs (As and Cr) and the cationic HMs (Pb, Cd, etc.). Reduction and precipitation of oxy-anionic HMs by biochar/modified biochar are the dominant mechanism for reducing HMs toxicity. Pristine biochar can effectively immobilize cationic HMs. The commonly applied modification method is to add substances that can precipitate HMs to the biochar. In addition, we assessed the risks of biochar applications. For instance, biochar may cause the leaching of certain HMs; biochar aging; co-transportation of biochar nanoparticles with HMs. Future work should focus on the artificial/intelligent design of biochar to make it suitable for remediation of multiple HMs contaminated soil.


Subject(s)
Metals, Heavy , Soil Pollutants , Charcoal , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis
9.
J Hazard Mater ; 409: 125022, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33421873

ABSTRACT

Biochar added to the soil is generally difficult to separate. In order to solve the problem of separating biochar from soil, this paper applies a hydraulic silicate gel material to the preparation of biochar. Non-magnetic silicate bonded biochar (SBC) and magnetic silicate bonded biochar (MSBC) with hydraulic properties were prepared. The new silicate bonded biochar has good adsorption performance, separation and recovery characteristics. The findings are as follows: (1) after three times of soil remediation, the silicate bonded biochar still had good mechanical properties, and the compressive strength was not attenuated, remaining between 210 and 270 N. (2) After three times of SBC and MSBC remediation, total Cd in soil decreased by 29.33% and 31.82% respectively, and available Cd decreased by 60.82% and 62.74% respectively. (3) After three cycles, the recovery rates of SBC and MSBC both exceeded 94.88%, and the highest adsorption regeneration rates of SBC and MSBC reached 83.09% and 92.06%, respectively. (4) The Cd content of wheat after SBC and MSBC repair was reduced by 29.67-37.36% and 47.25-63.74%, respectively.

10.
Sci Total Environ ; 733: 139320, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32446077

ABSTRACT

Recently, researchers have carried out a large number of studies on the adsorption of heavy metals by modified biochar, but there have been fewer explorations of the contributions and mechanisms of components in biochar composites on heavy metals adsorption. In this paper, the biochar was modified by Fe2+/Fe3+ and NaOH, and a further analysis of the adsorption of cadmium on the new biochar was conducted. It was found that (1) the adsorption capacity for cadmium of the modified biochar (M85) was 406.46 mg/g, which was 16 times that of the original biochar (C800); (2) the increased adsorption of cadmium onto the modified biochar had little correlation with the specific surface area, and the pure iron component was not the decisive factor for the huge adsorption capacity; and (3) the modified biochar was a kind of composite material with special construction, where the C-O-Fe structure that formed on its surface was the main reason for the sharp increase in adsorption. Among the iron components, iron oxides (Fe3O4, γ-Fe2O3 and Fe-O-Fe), iron-containing functional groups (-Fe-R-COOH and Fe-R-OH, etc.) and the mineral crystal XiFeYjOk reacted with the cadmium ion in aqueous solution to exchange, form complexes and precipitate, achieving the purpose of fixing the heavy metal. In addition, the aromatic structure C=Cπ can also adsorb Cd2+ to generate C=Cπ-Cd.


Subject(s)
Cadmium/analysis , Water Pollutants, Chemical/analysis , Adsorption , Charcoal
11.
Sci Total Environ ; 694: 133728, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31756818

ABSTRACT

To study the formation of biochar with high absorbability, experiments were carried out at different carbonization temperature (300, 400, 600, and 800 °C) and under different carbonization atmosphere (activating gases (steam and CO2) and inert gas (N2)) to prepare biochar. In this paper, the effects of the carbonization atmosphere on the biochar pore structure were studied, and the influence of the biochar pore structure on the adsorption-desorption behaviour of nutrients (NH4+-N, NO3--N, P, and K) was investigated. Experimental results: (1) The activating gases (steam and CO2) can catalytically crack activated carbon atoms and tar blocking the biochar pores at high temperatures (T > 600 °C), and the activating gas promotes the formation of microporous biochar (d < 2 nm). (2) Micropores with a pore diameter distribution of 0.6-2 nm in biochar have the strongest nutrients adsorption, and pores with a diameter below 0.6 nm cannot adsorb hydrated ions of nutrients. (3) Biochar prepared at 600 °C and CO2 atmosphere has the best adsorption effect on nutrients. The adsorption kinetic was well described by Pseudo-second-order model. (4) After 5 cycles of biochar, the adsorption of the nutrients is still >40% of the first adsorption. Biochar has relatively high reusability.


Subject(s)
Charcoal/chemistry , Nitrogen/chemistry , Phosphorus/chemistry , Adsorption , Models, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...