Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 21(1): 660, 2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32972369

ABSTRACT

BACKGROUND: Meat quality is a complex trait affected by genotypic and environmental factors. In a previous study, it was found that feedstuffs have various effects on the growth rate and meat quality of lambs. However, the underlying mechanisms are still not entirely clear. RESULTS: In this study, to investigate the mechanisms that impact meat quality in twin sheep fed either with high fiber low protein (HFLP) forage (Ceratoides) or low fiber high protein (LFHP) forage (alfalfa) diets, multi omics techniques were utilized for integration analysis based on the feed nutritional value and the sheep microbiome, transcriptome, metabolome, and fatty acid profile. Results showed that the production performance and the muscle components of lambs were significantly affected by feeds. The essential fatty acid (linoleic acid and arachidonic acid) content of the muscle, based on gas chromatography-mass spectrometry analysis, was increased when lambs were fed with HFLP. The microbes in the lambs' rumen fed a HFLP diet were more diverse than those of the LFHP fed group. Besides, the ratio of Bacteroidetes and Firmicutes in the rumen of the sheep fed a LFHP diet was 2.6 times higher than that of the HFLP fed group. Transcriptome analysis of the muscle revealed that the genes related to glucose metabolic processes and fatty acid biosynthesis were significantly differentially expressed between the two groups. Potential cross talk was found between the sfour omics data layers, which helps to understand the mechanism by which feedstuffs affect meat quality of lambs. CONCLUSION: Feed systems may affect the epigenetic regulation of genes involved in the glucose metabolic pathway. HFLP feeds could induce gluconeogenesis to maintain glucose levels in blood, resulting in decreased fat content in muscle. The multiple omics analysis showed that the microbiota structure is significantly correlated with the metabolome and gene expression in muscle. This study laid a theoretical foundation for controlling the nutrient intake of sheep; it suggested that its fatty acid spectrum modifications and the removal of meat quality detrimental material could guide sheep feeding for functional mutton.


Subject(s)
Dietary Fiber/metabolism , Gluconeogenesis , Glycolysis , Muscle, Skeletal/metabolism , Sheep/metabolism , Transcriptome , Animal Nutritional Physiological Phenomena , Animals , Arachidonic Acid/metabolism , Gastrointestinal Microbiome , Linoleic Acid/metabolism , Metabolome , Red Meat/standards , Sheep/genetics , Sheep/physiology
2.
Biochem Genet ; 57(3): 371-381, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30554339

ABSTRACT

The skin is the primary barrier between the internal organs of an organism and the environment, and it provides protection from ultraviolet (UV) radiation. According to the nocturnal bottleneck hypothesis, ungulates might have traversed to the grasslands and were exposed to UV radiation subsequent to the reduction in predation pressure. UV light exposure might have increased the S100A7 expression. In order to test whether the UV radiation is associated with the selection pressure on S100A7, we acquired the complete S100A7 DNA sequences from each of 42 vertebrate species. The results suggested that the evidence of diversifying selection in S100A7 occurred at the end of Mesozoic era, and the site of positive selection was observed in the branch of Artiodactyla (even-toed ungulates). In addition, we found that the transcription level of S100A7 in cashmere goat skin correlates with UV radiation. Our results indicated that S100A7 plays a role in the signaling between the skin genes and UV radiation during evolution.


Subject(s)
Evolution, Molecular , Gene Expression , S100 Calcium Binding Protein A7/genetics , Vertebrates/genetics , Animals , DNA/genetics , Likelihood Functions , Phylogeny , Seasons , Selection, Genetic , Sequence Alignment , Skin/metabolism , Skin/radiation effects , Species Specificity , Transcription, Genetic , Ultraviolet Rays , Vertebrates/classification
3.
PLoS One ; 13(1): e0190933, 2018.
Article in English | MEDLINE | ID: mdl-29351308

ABSTRACT

Avian species have a unique integument covered with feathers. Skin morphogenesis is a successive and complex process. To date, most studies have focused on a single developmental point or stage. Fewer studies have focused on whole transcriptomes based on the time-course of embryo integument development. To analyze the global changes in gene expression profiles, we sequenced the transcriptome of chicken embryo skin samples from day 6 to day 21 of incubation and identified 5830 differentially expressed genes (DEGs). Hierarchical clustering showed that E6 to E14 is the critical period of feather follicle morphogenesis. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DEGs, two kinds of Wnt signaling pathways (a canonical pathway and a non-canonical pathway) changed during feather follicle and feather morphogenesis. The gene expression level of inhibitors and ligands related to the Wnt signaling pathway varied significantly during embryonic development. The results revealed a staggered phase relationship between the canonical pathway and the non-canonical pathway from E9 to E14. These analyses shed new light on the gene regulatory mechanism and provided fundamental data related to integument morphogenesis of chickens.


Subject(s)
Chick Embryo/embryology , Chick Embryo/metabolism , Skin/embryology , Skin/metabolism , Wnt Signaling Pathway , Animals , Gene Expression Regulation, Developmental , Morphogenesis/genetics , Morphogenesis/physiology , Multigene Family , Transcriptome
4.
Biomed Res Int ; 2016: 5469371, 2016.
Article in English | MEDLINE | ID: mdl-27689084

ABSTRACT

Genetic networks provide new mechanistic insights into the diversity of species morphology. In this study, we have integrated the MGI, GEO, and miRNA database to analyze the genetic regulatory networks under morphology difference of integument of humans and mice. We found that the gene expression network in the skin is highly divergent between human and mouse. The GO term of secretion was highly enriched, and this category was specific in human compared to mouse. These secretion genes might be involved in eccrine system evolution in human. In addition, total 62,637 miRNA binding target sites were predicted in human integument genes (IGs), while 26,280 miRNA binding target sites were predicted in mouse IGs. The interactions between miRNAs and IGs in human are more complex than those in mouse. Furthermore, hsa-miR-548, mmu-miR-466, and mmu-miR-467 have an enormous number of targets on IGs, which both have the role of inhibition of host immunity response. The pattern of distribution on the chromosome of these three miRNAs families is very different. The interaction of miRNA/IGs has added the new dimension in traditional gene regulation networks of skin. Our results are generating new insights into the gene networks basis of skin difference between human and mouse.

SELECTION OF CITATIONS
SEARCH DETAIL
...