Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Genomics ; 55(3): 147-153, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36847439

ABSTRACT

Neijiang (NJ) and Yacha (YC) are two indigenous pig breeds in the Sichuan basin of China, displaying higher resistance to diseases, lower lean ratio, and slower growth rate than the commercial Western pig breed Yorkshire (YS). The molecular mechanisms underlying the differences in growth and development between these pig breeds are still unknown. In the present study, five pigs from NJ, YC, and YS breeds were subjected to the whole genome resequencing, and then the differential single-nucleotide polymorphisms (SNPs) were screened using a 10-kb window sliding in 1-kb step using the Fst method. Finally, 48,924, 48,543, and 46,228 nonsynonymous single-nucleotide polymorphism loci (nsSNPs) were identified between NJ and YS, NJ and YC, and YC and YS, which highly or moderately affected 2,490, 800, and 444 genes, respectively. Moreover, three nsSNPs were detected in the genes of acetyl-CoA acetyltransferase 1 (ACAT1) insulin-like growth factor 2 receptor (IGF2R), insulin-like growth factor 2 and mRNA-binding protein 3 (IGF2BP3), which potentially affected the transformation of acetyl-CoA to acetoacetyl-CoA and the normal functions of the insulin signaling pathways. Moreover, serous determinations revealed significantly lower acetyl-CoA content in YC than in YS, supporting that ACAT1 might be a reason explaining the differences in growth and development between YC and YS breeds. Contents of phosphatidylcholine (PC) and phosphatidic acid (PA) significantly differed between the pig breeds, suggesting that glycerophospholipid metabolism might be another reason for the differences between Chinese and Western pig breeds. Overall, these results might contribute basic information to understand the genetic differences determining the phenotypical traits in pigs.


Subject(s)
Swine , Animals , Acetyl Coenzyme A , Genome , Polymorphism, Single Nucleotide , Swine/genetics , Swine/growth & development
2.
Front Nutr ; 9: 852012, 2022.
Article in English | MEDLINE | ID: mdl-35571929

ABSTRACT

Lead poisoning caused by lead pollution seriously affects people's health. Lactic acid bacteria has been shown to be useful for biological scavenging of lead. In this experiment, Sprague-Dawley (SD) rats were treated with 200 mg/L of lead acetate solution daily to induce chronic lead poisoning, and oral Limosilactobacillus fermentum (L. fermentum) SCHY34 to study its mitigation effects and mechanisms on rat neurotoxicity. The L. fermentum SCHY34 showed competent results on in vitro survival rate and the lead ion adsorption rate. Animal experiments showed that L. fermentum SCHY34 maintained the morphology of rat liver, kidney, and hippocampi, reduced the accumulation of lead in the blood, liver, kidney, and brain tissue. Further, L. fermentum SCHY34 alleviated the lead-induced decline in spatial memory and response capacity of SD rats, and also regulated the secretion of neurotransmitters and related enzyme activities in the brain tissue of rats, such as glutamate (Glu), monoamine oxidase (MAO), acetylcholinesterase (AchE), cyclic adenosine monophosphate (cAMP), and adenylate cyclase (AC). In addition, the expression of genes related to cognitive capacity, antioxidation, and anti-apoptotic in rat brain tissues were increased L. fermentum SCHY34 treatment, such as brain-derived neurotrophic factor (BDNF), c-fos, c-jun, superoxide dismutase (SOD)1/2, Nuclear factor erythroid 2-related factor 2 (Nrf2), and B-cell lymphoma 2 (Bcl-2), and so on. L. fermentum SCHY34 showed a great biological scavenging and potential effect on alleviating the toxicity of lead ions.

3.
Anim Biotechnol ; 33(4): 680-689, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33455520

ABSTRACT

Gene expression profiles of blood can reflect the physiopathologic status of the immune system. The dynamic microRNA (miRNA) expression profiles of peripheral blood from pigs at different developmental stages, and how differential expression of miRNAs might relate to immune system development, are unknown. In this study, peripheral blood samples taken at five developmental stages were used to construct 15 miRNA libraries (three biological replicates/stage): 0 days (newborn), 30 days (weaning), 60 days (weaned), and 180 and 360 days (puberty). We identified 295 known mature miRNAs. Hierarchical clustering of the miRNA expression profile showed significant differences between individuals at the neonatal and postnatal stages. Functional enrichment analysis revealed that miRNAs differentially expressed between pairwise comparisons of the developmental stages were over-represented in immune-related pathways such as toll-like receptor signaling. The time-course of expression of the over-representated miRNAs exhibited a pattern of steady decline over time, for both the complete miRNA compendium and immune-related miRNAs. We identified six marker miRNAs that were highly negatively correlated with chronologic age and enriched for genes involved in immune-related pathways. This study of a peripheral blood miRNA transcriptome offers insight into immune system development in swine and provides a resource for pig genome annotation.


Subject(s)
MicroRNAs , Transcriptome , Animals , Cluster Analysis , Gene Expression Profiling/veterinary , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction , Swine/genetics , Weaning
4.
Food Funct ; 12(13): 6029-6044, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34037025

ABSTRACT

In this experiment, Lactobacillus fermentum CQPC08 (LF-CQPC08) isolated from traditionally fermented pickles was used to study its mitigation effect on lead acetate-induced oxidative stress and lead ion adsorption capacity in rats. In vitro experiments showed that the survival rate in artificial gastric juice and the growth efficiency in artificial bile salt of LF-CQPC08 was 93.6% ± 2.2% and 77.2% ± 0.8%, and the surface hydrophobicity rate was 45.5% ± 0.3%. The scavenging rates of hydroxyl radical, superoxide anion, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) were 47.8% ± 0.9%, 63.9% ± 1.2%, and 83.6% ± 1.5%, respectively, and the reduction power was 107.3 ± 2.8 µmol L-1. LF-CQPC08 could not only adsorb 76.9% ± 1.0% lead ions in aqueous solution but also reduce the lead content in serum, liver, kidneys, and brain tissue of Sprague-Dawley (SD) rats, as well as maintain the cell structure and tissue state of the liver and kidneys. In addition, by examining the indicators of inflammation and oxidation in the serum, liver, and kidneys of SD rats, we found that LF-CQPC08 can reduce the proinflammatory factors interleukin (IL)-1 beta (1ß), IL-6, tumor necrosis factor alpha, and interferon gamma in the body, increase the level of anti-inflammatory factor IL-10, enhance the activity of antioxidant enzymes such as superoxide dismutase and catalase and glutathione levels in serum and organ tissues, and reduce the production of reactive oxygen species and accumulation of lipid peroxide malondialdehyde. LF-CQPC08 can also activate the Keap1/Nrf2/ARE signaling pathway to promote high-level expression of the downstream antioxidants heme oxygenase 1 (HO-1), NAD(P)H : quinone oxidoreductase 1 (NQO1), and γ-glutamylcysteine synthetase (γ-GCS). As food-grade lactic acid bacteria, LF-CQPC08 has great potential and research value in removing heavy metals from food and alleviating the toxicity of heavy metals in the future.


Subject(s)
Kelch-Like ECH-Associated Protein 1/metabolism , Lead/adverse effects , Limosilactobacillus fermentum/physiology , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Protective Agents/pharmacology , Animals , Antioxidants/pharmacology , Blood , Brain , Cytokines/blood , Glutamate-Cysteine Ligase/metabolism , Glutathione/metabolism , Heme Oxygenase-1/metabolism , Inflammation , Kidney , Liver , Male , Malondialdehyde/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
5.
Asian-Australas J Anim Sci ; 33(5): 836-847, 2020 May.
Article in English | MEDLINE | ID: mdl-31480157

ABSTRACT

OBJECTIVE: We investigated the temporal expression profiles of long noncoding RNA (lncRNA) and mRNA in the peripheral blood of pigs during development and identified the lncRNAs that are related to the blood-based immune system. METHODS: Peripheral blood samples were obtained from the pigs at 0, 7, 28, and 180 days and 2 years of age. RNA sequencing was performed to survey the lncRNA and mRNA transcriptomes in the samples. Short time-series expression miner (STEM) was used to show temporal expression patterns in the mRNAs and lncRNAs. Gene ontology and Kyoto encyclopedia of genes and genomes analyses were performed to assess the genes' biological relevance. To predict the functions of the identified lncRNAs, we extracted mRNAs that were nearby loci and highly correlated with the lncRNAs. RESULTS: In total of 5,946 lncRNA and 12,354 mRNA transcripts were identified among the samples. STEM showed that most lncRNAs and mRNAs had similar temporal expression patterns during development, indicating the expressional correlation and functional relatedness between them. The five stages were divided into two classes: the suckling period and the late developmental stage. Most genes were expressed at low level during the suckling period, but at higher level during the late stages. Expression of several T-cell-related genes increased continuously during the suckling period, indicating that these genes are crucial for establishing the adaptive immune system in piglets at this stage. Notably, lncRNA TCONS-00086451may promote blood-based immune system development by upregulating nuclear factor of activated T-cells cytoplasmic 2 expression. CONCLUSION: This study provides a catalog of porcine peripheral blood-related lncRNAs and mRNAs and reveals the characteristics and temporal expression profiles of these lncRNAs and mRNAs during peripheral blood development from the newborn to adult stages in pigs.

6.
ACS Omega ; 4(7): 12598-12605, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31460380

ABSTRACT

Pt(NH3)4(NO3)2, Pt(NH3)4(Ac)2, (NH4)2PtCl4, and H2PtCl6 were used to prepare Pt/SAPO-11 catalysts to investigate the effect of Pt precursors on the hydroisomerization of n-dodecane. The catalyst derived from Pt(NH3)4(NO3)2 displays the best hydroisomerization activity and selectivity among these precursors. The hydroisomerization conversion of n-dodecane is affected by the platinum particle size, platinum dispersion, the location of platinum, and the valence state of platinum. The selectivity of n-dodecane is determined by the number of Brønsted acid sites and Pt crystal planes. These conclusions are verified by combining transmission electron microscopy, high-resolution transmission electron microscopy, hydrogen temperature programmed reduction, NH3-temperature programmed desorption, and Py-IR studies. The catalyst prepared with Pt(NH3)4(NO3)2 as the precursor exhibits the smallest platinum particle size and the highest platinum dispersion. Most of the platinum particles are supported on the external surface of SAPO-11 with the Pt(111) crystal face. Such a catalyst also possesses a suitable number of Brønsted acid sites and then displays the best catalytic performance. Obviously, the use of various precursors for the Pt-based catalyst can significantly affect the performance of Pt/SAPO-11 for the hydroisomerization of n-dodecane.

7.
PLoS One ; 12(9): e0184120, 2017.
Article in English | MEDLINE | ID: mdl-28877211

ABSTRACT

Growth performance and meat quality are important traits for the pig industry and consumers. Adipose tissue is the main site at which fat storage and fatty acid synthesis occur. Therefore, we combined high-throughput transcriptomic sequencing in adipose and muscle tissues with the quantification of corresponding phenotypic features using seven Chinese indigenous pig breeds and one Western commercial breed (Yorkshire). We obtained data on 101 phenotypic traits, from which principal component analysis distinguished two groups: one associated with the Chinese breeds and one with Yorkshire. The numbers of differentially expressed genes between all Chinese breeds and Yorkshire were shown to be 673 and 1056 in adipose and muscle tissues, respectively. Functional enrichment analysis revealed that these genes are associated with biological functions and canonical pathways related to oxidoreductase activity, immune response, and metabolic process. Weighted gene coexpression network analysis found more coexpression modules significantly correlated with the measured phenotypic traits in adipose than in muscle, indicating that adipose regulates meat and carcass quality. Using the combination of differential expression, QTL information, gene significance, and module hub genes, we identified a large number of candidate genes potentially related to economically important traits in pig, which should help us improve meat production and quality.


Subject(s)
Adipose Tissue/metabolism , Lipid Metabolism/physiology , Muscle, Skeletal/metabolism , Adipose Tissue/growth & development , Animals , Gene Expression Profiling , Genes/genetics , Genes/physiology , Lipid Metabolism/genetics , Muscle, Skeletal/growth & development , Phenotype , Principal Component Analysis , Quantitative Trait, Heritable , Swine/genetics , Swine/metabolism , Transcriptome/genetics , Transcriptome/physiology
8.
PLoS One ; 7(8): e43691, 2012.
Article in English | MEDLINE | ID: mdl-22937080

ABSTRACT

Breast milk is the primary source of nutrition for newborns, and is rich in immunological components. MicroRNAs (miRNAs) are present in various body fluids and are selectively packaged inside the exosomes, a type of membrane vesicles, secreted by most cell types. These exosomal miRNAs could be actively delivered into recipient cells, and could regulate target gene expression and recipient cell function. Here, we analyzed the lactation-related miRNA expression profiles in porcine milk exosomes across the entire lactation period (newborn to 28 days after birth) by a deep sequencing. We found that immune-related miRNAs are present and enriched in breast milk exosomes (p<10(-16), χ(2) test) and are generally resistant to relatively harsh conditions. Notably, these exosomal miRNAs are present in higher numbers in the colostrums than in mature milk. It was higher in the serum of colostrum-only fed piglets compared with the mature milk-only fed piglets. These immune-related miRNA-loaded exosomes in breast milk may be transferred into the infant body via the digestive tract. These observations are a prelude to in-depth investigations of the essential roles of breast milk in the development of the infant's immune system.


Subject(s)
Exosomes/genetics , Lactation/genetics , MicroRNAs/genetics , Milk/metabolism , Swine/genetics , Animals , Colostrum/metabolism , Exosomes/metabolism , Female , Gene Expression Profiling , Lactation/metabolism , MicroRNAs/metabolism , Swine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...