Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Front Med (Lausanne) ; 7: 572494, 2020.
Article in English | MEDLINE | ID: mdl-33324659

ABSTRACT

Keratin 17 (K17), a member of type I acidic epithelial keratin family, has been reported to be upregulated in many malignant tumors and to be involved in promoting the development of tumors. However, the precise role of K17 in progression of pancreatic cancer is still unknown. In this study, we found that K17 expression was highly expressed in pancreatic cancer tissues and cell lines and that upregulated expression was associated with the pathological grade and poor prognosis. K17 expression served as an independent predictor of pancreatic cancer survival. Meanwhile, we showed that knocking down K17 induced pancreatic cancer cell proliferation, colony formation and tumor growth in xenografts in mice. However, K17 upregulation inhibited pancreatic cancer cell proliferation and colony formation. Further mechanistic study revealed that K17 knockdown promoted cell cycle progression by upregulating CyclinD1 expression and repressed cell apoptosis. However, K17 upregulation suppressed cell cycle progression by decreasing CyclinD1 expression, and induced apoptosis by increasing the levels of cleaved Caspase3. In addition, K17 knockdown promoted pancreatic cancer cell migration and invasion, but K17 upregulation suppressed cell migration and invasion. Moreover, knocking down K17 promoted epithelial-mesenchymal transition (EMT) in pancreatic cancer cell by inhibiting E-cadherin expression and inducing Vimentin expression, and the effects of K17 upregulation were opposite to that of K17downregulation. Taken together, our findings suggest that K17 functions as a potential tumor suppressor, even though it is upregulated in pancreatic cancer.

2.
Mol Cells ; 41(9): 830-841, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-30145863

ABSTRACT

Recent studies have indicated that microRNAs (miRNAs) play an important role in hepatocellular carcinoma (HCC) progression. In this study, we showed that miR-766-3p was decreased in approximately 72% of HCC tissues and cell lines, and its low expression level was significantly correlated with tumour size, TNM stage, metastasis, and poor prognosis in HCC. Ectopic miR-766-3p expression inhibited HCC cell proliferation, colony formation, migration and invasion. In addition, we showed that miR-766-3p repressed Wnt3a expression. A luciferase reporter assay revealed that Wnt3a was a direct target of miR-766-3p, and an inverse correlation between miR-766-3p and Wnt3a expression was observed. Moreover, Wnt3a up-regulation reversed the effects of miR-766-3p on HCC progression. In addition, our study showed that miR-766-3p up-regulation decreased the nuclear ß-catenin level and expression of Wnt targets (TCF1 and Survivin) and reduced the level of MAP protein regulator of cytokinesis 1 (PRC1). However, these effects of miR-766-3p were reversed by Wnt3a up-regulation. In addition, PRC1 up-regulation increased the nuclear ß-catenin level and protein expression of TCF1 and Survivin. iCRT3, which disrupts the ß-catenin-TCF4 interaction, repressed the TCF1, Survivin and PRC1 protein levels. Taken together, our results suggest that miR-766-3p down-regulation promotes HCC cell progression, probably by targeting the Wnt3a/PRC1 pathway, and miR-766-3p may serve as a potential therapeutic target in HCC.


Subject(s)
Carcinoma, Hepatocellular/pathology , Disease Progression , Liver Neoplasms/pathology , MicroRNAs/metabolism , Wnt3A Protein/metabolism , Aged , Animals , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Humans , Liver Neoplasms/metabolism , Male , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Middle Aged , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Staging , Survivin/metabolism , Wnt3A Protein/genetics , Xenograft Model Antitumor Assays , beta Catenin/metabolism
3.
Article in Chinese | MEDLINE | ID: mdl-22295533

ABSTRACT

OBJECTIVE: To observe the changes of pulmonary surfactant (PS) in rats with acute lung injury(ALI) induced by lipopolysaccharide (LPS) and to explore the effects of hydrogen sulfide (H2S) on PS. METHODS: Fourty- eight male rats were randomly divided into six groups (n = 8). They were control group, LPS group, LPS+ NaHS low, middle, high dose groups and LPS+ PPG group. Saline was administrated in Control group. LPS was administrated in LPS group. In LPS + NaHS low, middle, high dose groups or LPS + PPG group, sodium hydrosulfide (NaHS) of different doses or DL-propargylglycine (PPG) were respectively administrated when the rats were administrated of LPS after 3 hours. All the rats were killed at 6 hours after administration of Saline or LPS. The morphological changes of alveolar epithelial type II cells (AEC-II) were respectively observed by transmission electron microscopes. The content of H2S in plasma and activity of cystathionine-gamma-lyase (CSE) in lung tissues were respectively detected. The contents of total protein (TP) and total phospholipids (TPL) in bronchoalveolar lavage fluid (BLAF) were respectively measured. The pulmonary surfactant protein A (SP-A), surfactant protein B (SP-B) and surfactant protein-C (SP-C) mRNA expressions in lung tissues were analysed. RESULTS: (1) Compared with control group, the content of H2S in plasma, activity of CSE, content of TPL, and SP-A, SP-B and SP-C mRNA expressions were respectively decreased in LPS group (P < 0.05 or P < 0.01). But the content of TP was increased in LPS group (P < 0.01); (2) Compared with LPS group, the content of H2S, activity of CSE and SP-A mRNA expression were significantly increased in LPS + NaHS low, middle and high dose groups (P < 0.05). The SP-B mRNA expression and content of TPL were significantly increased in LPS + NaHS Middle and High dose groups (P < 0.05). The content of TP was decreased in LPS + NaHS High dose group (P < 0.05). The SP-C mRNA expression was not altered in LPS+ NaHS low, middle and high dose groups (P > 0.05); (3) Compared with LPS group, the content of H2S, activity of CSE, content of TPL, and SP-A, SP-B and SP-C mRNA expressions were respectively decreased, but content of TP was increased in LPS + PPG group (P < 0.05). CONCUSION: The decrease of PS is the important physiopathologic process of ALI induced by LPS. Exogenously applied H2S could attenuate the process of ALI that possibly because H2S could adjust the compose and secretion of PS.


Subject(s)
Acute Lung Injury/metabolism , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Pulmonary Surfactants/metabolism , Acute Lung Injury/chemically induced , Animals , Lipopolysaccharides , Male , Rats , Rats, Sprague-Dawley
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 17(4): 965-8, 2009 Aug.
Article in Chinese | MEDLINE | ID: mdl-19698239

ABSTRACT

This study was purposed to evaluate a method to discriminate the action loci of anticancer agents in G(2) and M phases of cell cycle. The meta-amsacrine (m-AMSA) and vinblastine (VBL), already known as G(2) and M phase arrest agent respectively, were used to induce the arrest of MOLT-4 cells at G(2) and M phases, the change of DNA content was detected by flow cytometry, the morphology of arrested cells was observed by confocal microscopy so as to find the arrest efficacy difference of 2 anticancer agents. As a result, the flow cytometric detection showed that the arrested MOLT-4 cells displayed the raise of peaks in G(2) and M phases, but flow cytometric detection alone can not discriminate the difference between them. The observation with confocal microscopy showed that the MOLT-4 cells arrested by m-AMSA displayed the morphologic features in G(2) phase, while the MOLT-4 cells arrested by VBL displayed the morphologic features in M phase. This observation with confocal microscopy is helpful to discriminate the difference between them. In conclusion, the combination of flow cytometry with confocal microscopy is one of the effective methods to discriminate the kind of G(2) or M phase arresting agent of anticancer drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Division/drug effects , G2 Phase/drug effects , Cell Cycle/drug effects , Flow Cytometry , Humans , Microscopy, Confocal , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...