Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Food Sci Biotechnol ; 33(7): 1685-1696, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38623439

ABSTRACT

American ginseng (Panax quinquefolium L.) is used as tonic plant and high-grade nourishment. Ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) method was established for identifying the chemical constituent in three morphological regions of American ginseng, including main root (MR), rhizome (RH) and lateral root (LR). The 63 saponins was identified in different morphological regions of 10 American ginseng samples. The chemical maker compounds in corresponding morphological region, while the major compounds of MR (malonyl-ginsenoside Rb1, ginsenoside Rd, Rs2 and pseudo-RC1), LR (stipuleanoside R2, ginsenoside Re and malonyl-ginsenoside Rc), and RH (malonyl-ginsenoside Rd, Rb3, and chikusetsu saponin II) were discovered. Correlation analysis showed that 11 compounds were positively correlated with the antioxidant activity of American ginseng. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01453-4.

2.
Medicine (Baltimore) ; 102(49): e36576, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38065884

ABSTRACT

BACKGROUND: Heart failure (HF) is the most common cardiovascular disease in clinics. Processed Panax ginseng C.A. Mey. Products have significant therapeutic effects on HF. Therefore, it is of great significance to explore the mechanism of action of Processed Panax ginseng C.A. Mey. Products in the treatment of HF. METHODS: The saponin-like constituents of 3 different ginseng preparations were characterized by UPLC/QE-MS and the identified saponin constituents were subjected to network pharmacological analysis. Protein-protein interaction analyses of the targets of different ginseng preparations for the treatment of heart failure (HF) were performed using the STRING database, Gene Ontology enrichment analyses and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the DAVID database, and the results of the network pharmacological analyses were validated using the Autodock software. Finally, the relative quantitative content of 5 major ginsenosides in 3 processed ginseng products was evaluated. RESULTS: A total of 40 saponin compounds were identified based on mass spectrometry data. Network pharmacology and molecular docking analyses were used to predict the major targets of these sapions compounds and the key pathways mediating their anti-HF effects. After conducting a thorough screening, the study identified 5 primary ingredients of ginseng products ginsenoside Rh4, ginsenoside Rk3, ginsenoside Rk1, ginsenoside Rg5, and ginsenoside CK that can potentially target 22 essential proteins: EGFR, AKT1, ERBB2, STAT3, TNF, ESR1, MTOR, HRAS, MMP9, and PIK3CA, etc. Additionally, the Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that ginseng products can be beneficial in treating HF by interacting with pathways such as the PI3K-Akt signaling pathway, the TNF signaling pathway, the mTOR signaling pathway, and others. CONCLUSION: The present study revealed that the treatment of HF with different processed ginseng products may be related to the regulation of the PI3K-Akt signaling pathway, TNF signaling pathway, apoptosis pathway, mTOR signaling pathway, etc, and that the key active ingredients may be concentrated in black ginseng, which provides a theoretical basis and direction for the further study of the mechanism of action of ginseng. This provides a theoretical basis and research direction for further in-depth study of its mechanism of action.


Subject(s)
Drugs, Chinese Herbal , Heart Failure , Panax , Saponins , Humans , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Heart Failure/drug therapy , TOR Serine-Threonine Kinases , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
3.
J Sep Sci ; 46(24): e2300473, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37933715

ABSTRACT

Angelica sinensis (Oliv.) Diels. has been used for women to enrich the blood, prevent and treat blood deficiency syndrome in Traditional Chinese Medicine for thousands of years. Wine-processed Angelica sinensis, soil-processed Angelica sinensis, oil-processed Angelica sinensis, and charred-processed Angelica sinensis are the most significant four processed products used in Chinese clinic. However, there have been few studies aimed at comparing their chemical differences. Ultra-high-performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry combining with nontargeted metabolomics was applied to investigate the diversity of processed products of Angelica sinensis. A total of 74 compounds with the variable importance in the projection value more than 1.5 and P less than 0.05 in ANOVA were highlighted as the compounds that contribute most to the discrimination of Angelica sinensis and four processed products. The results showed the metabolic changes between Angelica sinensis and its four processed products, there were 19 metabolites, 3 metabolites, 6 metabolites, and 45 metabolites were tentatively assigned in soil-processed Angelica sinensis, wine-processed Angelica sinensis, oil-processed Angelica sinensis, and charred-processed Angelica sinensis, respectively. These results suggested that the proposed metabolomics approach was useful for the quality evaluation and control of processed products of Angelica sinensis.


Subject(s)
Angelica sinensis , Drugs, Chinese Herbal , Humans , Female , Drugs, Chinese Herbal/analysis , Angelica sinensis/chemistry , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Mass Spectrometry , Metabolomics , Soil
4.
J Pharm Biomed Anal ; 236: 115738, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37742504

ABSTRACT

OBJECTIVE: This study aimed to explore the mechanism of total saponin of black ginseng (TSBG) in treating heart failure (HF) in DOX-induced HF model rats. METHODS: Rats with HF induced by the intraperitoneal injection of DOX were treated with TSBG (low dose, 30 mg/kg/day; medium dose, 60 mg/kg/day; high dose, 120 mg/kg/day) and shakubar trivalsartan (80 mg/kg/day, positive control) for four weeks. Serum BNP and ANP levels were tested by ELISA, and pathological tissue sections were examined. Serum metabolites were measured using nontargeted metabolomic techniques. The expression of Akt/mTOR autophagy-associated proteins in heart tissue was detected using Western blot, including Beclin1, p62, LCII and LC3I. RESULTS: Compared with the model group, rats in the TSBG-H group had a significantly lower heart index (p < 0.05), significantly lower serum levels of BNP (p < 0.01) and ANP (p < 0.01) and significantly fewer cardiac histopathological changes. Metabolomic results showed that TSBG significantly back-regulated 12 metabolites (p < 0.05), including cholesterol, histamine, sphinganine, putrescine, arachidonic acid, 3-sulfinoalanine, hypotaurine, gluconic acid and lysoPC (18:0:0). These metabolite changes were involved in taurine and hypotaurine metabolism, arachidonic acid metabolism, sphingolipid metabolism, etc. The protein expression level of p-Akt/Akt and p-mTOR/mTOR was significantly up-regulated (p < 0.001), whereas that of Beclin1, p62 (p < 0.001) and LCII/LC3I was down-regulated (p < 0.05). CONCLUSION: TSBG has an excellent therapeutic effect on DOX-induced HF in rats, probably by regulating the Akt/mTOR autophagy signalling pathway, resulting in the improvement of taurine and hypotaurine metabolism, arachidonic acid metabolism and sphingolipid metabolism, which may provide a reference for elucidating the potential mechanism of action of TSBG against HF.


Subject(s)
Heart Failure , Panax , Saponins , Rats , Animals , Rats, Sprague-Dawley , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/therapeutic use , Saponins/pharmacology , Beclin-1 , Panax/metabolism , Arachidonic Acid , Heart Failure/chemically induced , Heart Failure/drug therapy , TOR Serine-Threonine Kinases/metabolism , Metabolomics , Taurine , Sphingolipids/therapeutic use
5.
Foods ; 12(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37107373

ABSTRACT

Gut microbiota plays an important role in the pathophysiology of obesity. Fungal polysaccharide can improve obesity, but the potential mechanism needs further study. This experiment studied the potential mechanism of polysaccharides from Sporisorium reilianum (SRP) to improve obesity in male Sprague Dawley (SD) rats fed with a high-fat diet (HFD) using metagenomics and untargeted metabolomics. After 8 weeks of SRP (100, 200, and 400 mg/kg/day) intervention, we analyzed the related index of obesity, gut microbiota, and untargeted metabolomics of rats. The obesity and serum lipid levels of rats treated with SRP were reduced, and lipid accumulation in the liver and adipocyte hypertrophy was improved, especially in rats treated with a high dose of SRP. SRP improved the composition and function of gut microbiota in rats fed with a high-fat diet, and decreased the ratio of Firmicutes to Bacteroides at the phylum level. At the genus level, the abundance of Lactobacillus increased and that of Bacteroides decreased. At the species level, the abundance of Lactobacillus crispatus, Lactobacillus helveticus, and Lactobacillus acidophilus increased, while the abundance of Lactobacillus reuteri and Staphylococcus xylosus decreased. The function of gut microbiota mainly regulated lipid metabolism and amino acid metabolism. The untargeted metabolomics indicated that 36 metabolites were related to the anti-obesity effect of SRP. Furthermore, linoleic acid metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, and the phenylalanine metabolism pathway played a role in improving obesity in those treated with SRP. The study results suggest that SRP significantly alleviated obesity via gut-microbiota-related metabolic pathways, and SRP could be used for the prevention and treatment of obesity.

6.
Nat Prod Res ; 37(19): 3297-3301, 2023.
Article in English | MEDLINE | ID: mdl-35422187

ABSTRACT

Black ginseng (BG) is one type of ginseng product, which is produced from fresh ginseng by steaming and drying several times. To characterize the differences in saponin composition of BG and white ginseng (WG), the ultra-high performance liquid chromatography Quadrupole-Orbitrap mass spectrometry (UHPLC-Q-Orbitrap-MS) was used to analyze the ginseng samples. A total of 53 saponins were successfully identified, and the possible transformation pathways of several ginsenosides were described. Multivariate statistical analysis methods were used to perform the pattern recognition and further to select the marker compounds of samples. Twenty ginsenosides were considered to contribute most to the sample classification, six of which including Rg3, Rk1, Rh4, Rs3, Rs5, and Rk2 increased significantly in BG, while the other fourteen ginsenosides were greatly elevated in WG. The changes of ginsenoside in BG and WG were characterized by UHPLC-Q-Orbitrap-MS, which is of great significance for its quality control and effect evaluation.

7.
J Food Biochem ; 46(12): e14432, 2022 12.
Article in English | MEDLINE | ID: mdl-36183169

ABSTRACT

Black ginseng (BG) shows beneficial effects on liver injury, but the related mechanism has not been fully revealed. This study attempted to investigate the protective effects and associated mechanisms of BG against nonalcoholic steatohepatitis (NASH). Twelve ginsenosides in BG were annotated by ultrahigh performance liquid chromatography combined with high resolution mass spectrometry (UHPLC-HRMS). The Western diet (WD) together with the low-dose CCl4 was given to mice to create the NASH model. Histopathological examination and liver/serum biochemical analysis revealed that the NASH mice displayed severe steatosis and liver damage compared with control mice. After BG administration, the serum and liver triglycerides (TG) concentrations and the serum level of low-density lipoprotein (LDL) were dramatically reduced. Besides, the BG treatment greatly decreased the serum values of interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α), and the hepatic expression of fibrotic-related genes, such as alpha-smooth muscle actin (α-SMA) and collagen type I alpha 1 (Col1α1). We further discovered that BG administration could block the protein expression of toll-like receptor 4 (TLR4) and the phosphorylation of nuclear factor-kappa B p65 (NF-κB p65), indicating that BG exerted a liver protective effect via regulating the TLR4/NF-κB pathway. This study demonstrated the therapeutic efficacy and the associated mechanism of BG in the treatment of NASH, giving evidence for BG as a potential functional food to prevent NASH. PRACTICAL APPLICATIONS: BG is a type of processed ginseng product that has been used as diet supplementation and has shown favorable effects on liver injury. However, the pharmacological impact of BG on NASH has not been studied in depth. The present study showed that BG could effectively reduce WD-induced liver fibrosis and inflammation through the TLR4/NF-κB axis, which indicated that BG has the potential to be utilized as a functional herb to attenuate liver injury.


Subject(s)
Non-alcoholic Fatty Liver Disease , Panax , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Diet, Western , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Panax/metabolism , Signal Transduction
8.
Anal Methods ; 14(41): 4095-4105, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36205110

ABSTRACT

Adsorption and separation of dyes are extremely important as they damage the water environment and human health. ZIF-8 has the benefits of large specific surface area, explicit structure and a good confinement effect on POM, which can better facilitate the synergetic effect of POM and ZIF-8. Therefore, ZIF-8 was chosen as the support material to wrap H3PW12O40. In the present work, magnetic ZIF-8@H3PW12O40 composites were prepared by a facile impregnation synthesis strategy and applied to the adsorption of cationic dyes with methylene blue (MB) as a representative. Compared with the other three prepared materials, Fe3O4@ZIF-8@H3PW12O40 exhibited the best adsorption performance. The adsorption process conformed to the pseudo-second-order model and the Langmuir model, and the adsorption reaction was spontaneous with the maximum adsorption capacity of up to 431.03 mg g-1 within 20 min. The electrostatic attraction has been testified to be the major driving force of the adsorption process, and the material can still hold 90% of the max adsorption capacity after 5 cycles, which serve as the foundation for its further applications in the field of adsorption.


Subject(s)
Water Pollutants, Chemical , Water Purification , Humans , Adsorption , Coloring Agents/chemistry , Water Pollutants, Chemical/analysis , Cations , Magnetic Phenomena
9.
J Anal Methods Chem ; 2022: 8022473, 2022.
Article in English | MEDLINE | ID: mdl-35991327

ABSTRACT

Objective: Because the response of evaporating light scattering detector (ELSD) being in a nonlinear mode, there is no consensus on the method of calculating its relative correction factors (RCF), which limits the application of the quantitative analysis for multi-components by a single marker (QAMS) with LC-ELSD. Methods: Using eight fructooligosaccharides of Morinda officinalis as a case study, the nystose (GF3) as a single standard was adopted to develop a QAMS method to simultaneously determine the other seven fructooligosaccharides with HILIC-HPLC-ELSD method. Six calculation methods of RCF were investigated to select the most reasonable method. The relative error of content between the QAMS and the external standard method (ESM) obtained from 30 batches of samples was used as an indicator to evaluate the six methods. Finally, a chemometrics analysis was performed to find the differential components among MO and its three processing products. Results: It was first reported that only one calculation method was scientific for calculating RCF for the LC-ELSD method. The RCFs of GF3 to the other seven fructooligosaccharides (GF1-GF8) were obtained as 0.86, 0.91, 0.93, 1.05, 1.15, 1.12, and 1.18, respectively. The QAMS of eight fructooligosaccharides of Morinda officinalis was validated with good linearity (R 2 > 0.9998) and accepted the accuracy of 95-105% (RSD < 1.81%) based on nystose. Finally, Morinda officinalis and its three processed products were distinguished and could be differed based on the content of the eight fructooligosaccharides. Conclusion: The scientific calculation method of RCF would be of great significance for developing the QAMS method in Pharmacopoeia when performing the LC-ELSD method.

10.
Chem Biodivers ; 19(10): e202200719, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36040357

ABSTRACT

This study aimed to investigate the therapeutic effect of black ginseng (BG) on non-alcoholic fatty liver disease (NAFLD) using network pharmacology combined with the molecular docking strategy. The saponin composition of BG was analyzed by liquid chromatography-mass spectrometry (LC/MS) instrument. Then the network pharmacology was applied to explore the potential targets and related mechanisms of BG in the treatment of NAFLD. After screening out key targets, molecular docking was used to predict the binding modes between ginsenoside and target. Finally, a methionine and choline deficiency (MCD) diet-induced NAFLD mice model was established to further confirm the therapeutic effect of BG on NAFLD. Twenty-four ginsenosides were annotated based on the MS and tandem MS information. Ten proteins were screened out as key targets closely related to BG treatment of NAFLD. The molecular docking showed that most of the ginsenosides had good binding affinities with AKT1. The validation experiment revealed that BG administration could reduce serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and improve the MCD diet-induced histological changes in liver tissue. Moreover, BG could upregulate the phosphorylation level of AKT in the liver of NAFLD mice, thereby exerting the therapeutic effect on NAFLD. Further studies on the active ginsenosides as well as their synergistic action on NAFLD will be required to reveal the underlying mechanisms in-depth. This study demonstrates that network pharmacological prediction in conjunction with molecular docking is a viable technique for screening the active chemicals and related targets of BG, which can be applied to other herbal medicines.


Subject(s)
Choline Deficiency , Ginsenosides , Non-alcoholic Fatty Liver Disease , Panax , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Alanine Transaminase , Panax/metabolism , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Molecular Docking Simulation , Proto-Oncogene Proteins c-akt/metabolism , Network Pharmacology , Choline Deficiency/metabolism , Choline Deficiency/pathology , Aspartate Aminotransferases , Liver , Methionine/metabolism , Methionine/pharmacology
11.
Biochem Biophys Res Commun ; 620: 56-62, 2022 09 10.
Article in English | MEDLINE | ID: mdl-35780581

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the antidepressant effect of Jujuboside A (JuA) on corticosterone (CORT)-induced depression in mice and explore the underlying mechanisms. METHODS: The mice models were submitted to CORT and treated with JuA (10 and 30 mg/kg) for three weeks. Experiments were also performed on mice with brain-derived neurotrophic factor knockdown (BDNF (±)) as control subjects. Behavioral tests, including the open field test (OFT), tail suspension test (TST), forced swimming test (FST) and Morris water maze (MWM), were then performed to evaluate the antidepressant effect of JuA. The expression levels of BDNF, tyrosine kinase receptor B (TrkB), and cyclic AMP response element binding protein (CREB) in the hippocampi of mice were examined by immunohistochemistry (IHC) and Western blot. The effect of JuA on the viability of mouse hippocampal cells (HT22) was also assessed by CCK-8 assay. RESULTS: JuA significantly decreased the OFT and TST immobility time of the mice, the total distance travelled and the time spent in the central area also effectively increased in the OFT. In the MWM, the escape latencies of the mice decreased remarkably, while the number of times the mice crossed the platform and the target quadrant increased significantly after treatment with JuA. In addition, the BDNF, TrkB, and CREB expression levels were significantly increased in the hippocampi of the mice treated with JuA. Furthermore, JuA clearly attenuated CORT-induced cell injury, as evidenced by the increased viability of the HT22 cells. CONCLUSION: These findings demonstrated that JuA may exhibit potential antidepressant effect in mice by increasing protein expression levels of BDNF, TrkB, CREB, and improving the viability of the hippocampal cells.


Subject(s)
Brain-Derived Neurotrophic Factor , Corticosterone , Animals , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Corticosterone/adverse effects , Cyclic AMP Response Element-Binding Protein/metabolism , Depression/chemically induced , Depression/drug therapy , Depression/metabolism , Disease Models, Animal , Hippocampus/metabolism , Humans , Mice , Saponins , Stress, Psychological
12.
Int J Anal Chem ; 2022: 6721937, 2022.
Article in English | MEDLINE | ID: mdl-35521625

ABSTRACT

A method with ultrahigh performance liquid chromatography Quadrupole-Orbitrap tandem mass spectrometry (UHPLC-Q-Orbitrap-MS/MS) was applied for the quality evaluation of different processing and drying of American ginseng, including natural drying (ND), steam drying (SD), and vacuum freeze-drying (VFD). A total of 51 saponins were successfully identified in three processed products. Three processed American ginseng products were well-differentiated in orthogonal partial least-squares discriminant analysis (OPLS-DA). The S-plot also identified the marker compounds in each product, while the major ginsenosides of ND (malonyl (M)-Rd, M-Rb1, Rg1), SD (20 (S)-Rg3, 20 (S)-Rg2), and VFD (M-Rd, M-Rb1) were found. The results indicate that the method by vacuum freeze-drying can retain the content of rare ginsenosides and malonyl-ginsenosides. The marker compounds selected will benefit the holistic evaluation of related American ginseng products.

13.
Food Sci Nutr ; 10(5): 1592-1601, 2022 May.
Article in English | MEDLINE | ID: mdl-35592298

ABSTRACT

Lophatherum gracile Brongn. is a medicinal and edible plant resource as well as a natural additive in the functional food market. To better understand its characteristics and efficacy, a method combining chromatographic fingerprints and antioxidant activity was proposed. A total of 21 common peaks were confirmed from liquid chromatography fingerprints and were identified as 14 flavonoids and 7 phenolic acids by ultra-high-performance liquid chromatography (UHPLC) coupled with quadrupole Orbitrap mass spectrometry (Q-Orbitrap/MS). Their antioxidant activities were evaluated by 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH), 2,2'-diazide-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and ferric reducing antioxidant power (FRAP) assay. The results showed that all of the test samples had moderate to high antioxidant effects, with IC50 values ranging from 5.2 to 16.1 mg/ml and 1.2 to 2.8 mg/ml for DPPH and ABTS assays, and the FeSO4 concentrations of 1.84-4.20 mmol/L for the FRAP assay. The spectrum-effect relationship between UHPLC fingerprints and antioxidant activity was investigated through Pearson correlation analysis and Grey relational analysis (GRA) to identify the antioxidant constitutes in Lophatherum gracile Brongn. The results showed that 11 compounds were greatly associated with the antioxidant activity with a correlation degree >0.80, which can be used as the quality marker of Lophatherum gracile Brongn.

14.
Nat Prod Res ; 36(13): 3464-3468, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33297729

ABSTRACT

An ultra-high performance liquid chromatography coupled with quadrupole Orbitrap mass spectrometry (UHPLC-Q-Orbitrap/MS)-based metabolomics method was applied to investigate the chemome diversity of Schisandra chinensis fructus (SF) and its processed products, including vinegar-processed Schisandra (VS), wine-processed Schisandra (WS), and honey-processed Schisandra (HS). A clear classification among four Schisandra products was observed in the score plot of the partial least-squares discriminant analysis (PLS-DA) model, then 28 marker compounds were selected and identified. The content of most marker compounds in VS and WS was increased compared with that in SF, and the lowest content was observed in HS, then the high-performance liquid chromatography (HPLC) analysis was performed to confirm the change trends. These results suggested the chemical composition variation occurs in different Schisandra products, and the marker compounds selected in this study will be useful for the quality evaluation of Schisandra products.


Subject(s)
Drugs, Chinese Herbal , Schisandra , Biomarkers , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Gas Chromatography-Mass Spectrometry , Mass Spectrometry , Metabolomics , Schisandra/chemistry
15.
ACS Omega ; 6(26): 16804-16815, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34250340

ABSTRACT

A new model based on a decompression wave prediction model and an improved BTC model has been developed to investigate the arrest toughness in the fracture process of the supercritical CO2 pipeline. The comparison of the decompression wave velocity and the fracture propagation velocity was carried out to identify whether the pipe can prevent fracture propagation relying on its own toughness. If not, the minimum Charpy V-notch energy and the minimum wall thickness of steel pipes required for arrest fracture can be calculated using the improved BTC model. The results show that the working conditions with an initial pressure for the fracture of 11.7 MPa and a temperature of 323.15 K are the most difficult conditions to stop the fracture. The minimum wall thickness calculated only according to the strength design cannot meet the toughness requirements for ductile fracture arrest in the most difficult conditions in some cases. Then, the minimum wall thickness of the supercritical CO2 pipeline required for ductile fracture arrest in these cases will be obtained. For instance, the minimum wall thicknesses of X65, X70, and X80 steel pipes for fracture arrest with a pipe diameter of 610 mm at a design pressure of 13.2 MPa are 17.28, 14.58, and 12.81 mm, respectively, and when the pipe diameter is 1016 mm at a design pressure of 20.4 MPa, the minimum wall thicknesses of X70 and X80 pipes can meet the requirements of arrest toughness. The model established in this study can quickly and accurately calculate the minimum wall thickness and minimum Charpy energy required to stop fracture in the supercritical CO2 pipeline, which is suitable for engineering applications. The findings of this study can help in better understanding of the fracture process of supercritical CO2 pipelines.

16.
Biochem Biophys Res Commun ; 559: 222-229, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33962209

ABSTRACT

As one of the natural triterpenoids isolated from Anemone Raddeana Regel, Raddeanin A (RA) has been confirmed to possess therapeutic effects against multiple tumorigeneses, especially for the onset of glioblastoma and growth in human brains. However, the mechanism by which this happens remains poorly understood in terms of the vascular endothelium trafficking routine of RA through the brain-blood barrier (BBB). To seek such answers, human brain microenvironment endothelial cells (HBMECs) were used to stimulate the microenvironment in vitro, and to explore the intracellular accumulation of RA. The results of this experiment illustrated that RA has a relative moderate transport affinity for such cells. The kinetic parameter Km was 37.01 ± 2.116 µM and Vmax was 9.412 ± 0.1375 nM/min/mg of protein. Interestingly, protein downregulation of P-glycoprotein (P-gp, ABCB1/MDR1) significantly activated RA transmembrane activity, which proves that P-gp is responsible for RA cellular trafficking. In addition, the selective non-specific inhibitor, LY335979 increased either RA or the classical substrate of P-gp, digoxin, intracellular accumulation by restricting the transporter's function but without jeopardizing cytomembrane proteins. Moreover, a decrease in the expression or activity of P-gp triggered RA drug resistance to HBMECs. In summary, our data showed that both the expression and function of P-gp are all necessary for RA transmembrane trafficking through cerebrovascular endothelial cells. This study provides significant evidence for the presence of a connection between RA transport and P-gp variation during drug BBB penetration. It is also suggesting some vital guidance on the RA pharmacodynamic effect in human brains.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Brain/blood supply , Endothelial Cells/metabolism , Saponins/metabolism , Biological Transport , Drug Resistance , Humans , Intracellular Space/metabolism , Microvessels/metabolism
18.
BMC Complement Med Ther ; 20(1): 7, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-32020868

ABSTRACT

BACKGROUND: As the dry rhizome of Anemone raddeana Regel, Rhizoma Anemones Raddeanae (RAR), which belongs to Ranunculaceae, is usually used to treat wind and cold symptoms, hand-foot disease and spasms, joint pain and ulcer pain in China. It is well known that the efficacy of RAR can be distinctly enhanced by processing with vinegar due to the reduced toxicity and side effects. However, the entry of vinegar into liver channels can cause a series of problems. In this paper, the differences in the acute toxicity, anti-inflammatory and analgesic effects between RAR and vinegar-processed RAR were compared in detail. The changes in the chemical compositions between RAR and vinegar-processed RAR were investigated, and the mechanism of vinegar processing was also explored. METHODS: Acute toxicity experiments were used to examine the toxicity of vinegar-processed RAR. A series of studies, such as the writhing reaction, ear swelling experiment, complete Freund's adjuvant-induced rat foot swelling experiment and cotton granuloma, in experimental mice was conducted to observe the anti-inflammatory effect of vinegar-processed RAR. The inflammatory cytokines of model rats were determined by enzyme-linked immunosorbent assay (ELISA). Liquid Chromatography-Quadrupole-Time of Flight mass spectrometer Detector (LC-Q-TOF) was used to analyse the chemical compositions of the RARs before and after vinegar processing. RESULTS: Neither obvious changes in mice nor death phenomena were observed as the amount of vinegar-processed RAR in crude drug was set at 2.1 g/kg. Vinegar-processed RAR could significantly prolong the latency, reduce the writhing reaction time to reduce the severity of ear swelling and foot swelling, and remarkably inhibit the secretion of Interleukin-1ß(IL-1ß), Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) proinflammatory cytokines. The content of twelve saponins (e.g., Eleutheroside K) in RAR was decreased after vinegar processing, but six other types (e.g., RDA) were increased. CONCLUSIONS: These results revealed that vinegar processing could not only improve the analgesic and anti-inflammatory effects of RAR but also reduce its own toxicity. TRIAL REGISTRATION: Not applicable.


Subject(s)
Acetic Acid/chemistry , Anemone/toxicity , Plant Extracts/pharmacology , Plant Extracts/toxicity , Rhizome/toxicity , Analgesics/pharmacology , Anemone/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , China , Chromatography, Liquid , Mass Spectrometry , Mice , Rats , Rats, Sprague-Dawley , Rhizome/chemistry , Toxicity Tests, Acute
19.
Biochem Biophys Res Commun ; 485(2): 335-341, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28219642

ABSTRACT

Cisplatin is a main compound for human hepatocellular carcinoma (HCC) chemotherapies, but it has certain cytotoxicity during applications. To release that, combining with other drugs are being as a regular plan in clinic. In our present study, we are focusing on one of active monomers extracted from Anemone Raddeana Regel, Raddeanin A (RA), which is on behalf of the same character like cisplatin in the tumor remedies. In order to investigate whether combination usage of RA and cisplatin can be priority to the later drug's effect development and its toxicity reduction in HCC, both of two drugs were treated 24 h or 48 h in QGY-7703 cells for estimating their abilities in tumor cell proliferation inhibition. Results show RA makes synergistic functions with cisplatin after measuring and analyzing their combination index (CI) values. Meanwhile it can strengthen cisplatin's effect through arresting the tumor cells in G0/G1 cycle and further promoting their apoptosis. Interestingly, the molecule signals correlated to tumor cell apoptosis containing both of p53 and bax are simultaneously activated, but bcl-2 and survivin are all depressed in mRNA level. Meanwhile, combining usage with RA can even raise the intracellular productions of reactive oxygen species (ROS). All these consequences reflect RA plays an important role in enhancing the therapeutic effect of cisplatin in HCC. This finding may guide for the drug usage of cisplatin in clinic practice.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Cisplatin/pharmacology , Liver Neoplasms/drug therapy , Saponins/pharmacology , Apoptosis/drug effects , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Reactive Oxygen Species/metabolism
20.
Zhongguo Zhong Yao Za Zhi ; 38(12): 2009-14, 2013 Jun.
Article in Chinese | MEDLINE | ID: mdl-24066602

ABSTRACT

OBJECTIVE: To investigate the effect of CYP450 enzyme inhibition of berberine in pooled human liver microsomes by cocktail probe drugs. METHOD: Cocktail probe drugs method has been established, an LC-MS/MS analytical method has been established to determine the five probes of midazolam, phenacetin, dextromethorphan, tolbutamide, chlorzoxazone and the internal standard was benzhydramine to evaluate the effect of CYP450 activity following administration of berberine in pooled human liver microsomes. RESULT: Compared with control group, the pharmacokinetics of midazolam, phenacetin and tolbutamide were no significant differences, but the pharmacokinetics of chlorzoxazone was significantly decreased. There were no significant differences for the pharmacokinetics of dextromethorphan when the concentration of berberine was 50 microg x L(-1). The pharmacokinetics of dextromethorphan was significantly decreased when the concentration of berberine was exceed 200 microg x L(-1). CONCLUSION: Berberine has no influence on the activities of CYP3A4, CYP1A2 and CYP2C19 below 2 000 microg x L(-1), but can inhibit the activity of CYP2E1 and CYP2D6 in concentration-dependent.


Subject(s)
Berberine/pharmacology , Cytochrome P-450 Enzyme Inhibitors , Microsomes, Liver/enzymology , Chlorzoxazone/pharmacokinetics , Dextromethorphan/pharmacokinetics , Dose-Response Relationship, Drug , Humans , Midazolam/pharmacokinetics , Phenacetin/pharmacokinetics , Tolbutamide/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...