Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 473: 134684, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38788581

ABSTRACT

The increase of electronic waste worldwide has resulted in the exacerbation of combined decabromodiphenyl ethane (DBDPE) and cadmium (Cd) pollution in soil, posing a serious threat to the safety of soil organisms. However, whether combined exposure increases toxicity remains unclear. Therefore, this study primarily investigated the toxic effects of DBDPE and Cd on earthworms at the individual, tissue, and cellular levels under single and combined exposure. The results showed that the combined exposure significantly increased the enrichment of Cd in earthworms by 50.32-90.42 %. The toxicity to earthworms increased with co-exposure, primarily resulting in enhanced oxidative stress, inhibition of growth and reproduction, intensified intestinal and epidermal damage, and amplified coelomocyte apoptosis. PLS-PM analysis revealed a significant and direct relationship between the accumulation of target pollutants in earthworms and oxidative stress, damage, as well as growth and reproduction of earthworms. Furthermore, IBR analysis indicated that SOD and POD were sensitive biomarkers in earthworms. Molecular docking elucidated that DBDPE and Cd induced oxidative stress responses in earthworms through the alteration of the conformation of the two enzymes. This study enhances understanding of the mechanisms behind the toxicity of combined pollution and provides important insights for assessing e-waste contaminated soils.


Subject(s)
Bromobenzenes , Cadmium , Molecular Docking Simulation , Oligochaeta , Oxidative Stress , Soil Pollutants , Animals , Oligochaeta/drug effects , Oligochaeta/metabolism , Oxidative Stress/drug effects , Cadmium/toxicity , Soil Pollutants/toxicity , Bromobenzenes/toxicity , Superoxide Dismutase/metabolism , Apoptosis/drug effects
2.
J Hazard Mater ; 467: 133769, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38359758

ABSTRACT

The widespread use of Cd-based quantum dots (Cd-QDs) has led to their inevitable release into the environment, and the prevalent iron oxides and natural organic matter (NOM) are the key factors affecting the environmental behavior and fate of Cd-QDs. However, the impact of NOM adsorbed on iron oxides on the behavior of Cd-QDs with iron oxides and the mechanism of its interaction are not clear. In this study, two kinds of water-soluble QDs (CdSe QDs and core-shell CdSe/ZnS QDs) were selected to study the aggregation and adsorption behavior on goethite (Goe) and goethite-humic acid/fulvic acid composites (Goe-HA/FA). Aggregation kinetics and adsorption experiments between QDs and Goe(-HA/FA), characterization, and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory calculations indicated that electrostatic interaction was the dominant force for QDs adsorption on Goe(-HA/FA). HA/FA changed the surface charge of Goe and increased the electrostatic repulsion and steric hindrance between the particles, which in turn inhibited the adsorption of QDs on Goe. Besides, unsubstituted aromatic carbons, carboxy carbons, and carbonyl carbons played an important role in the adsorption process, and chemisorption occurred between QDs and Goe(-HA/FA). Our findings are important for better assessing the transport, fate, and potential environmental impacts and risks of Cd-QDs in iron-rich environments.

3.
Sci Total Environ ; 912: 168792, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38000747

ABSTRACT

Both microplastics and Cr(VI) potentially threaten soil and crops, but little is known about their interaction in the soil-plant system. This study investigated the effect and mechanism of polyethylene (PE), polyamide (PA), and polylactic acid (PLA) microplastics on Cr bioaccumulation and toxicity in a Cr(VI) contaminated soil-cucumber system during the lifecycle. The results show that microplastics had a greater effect on Cr accumulation in cucumber roots, stems, and leaves than in fruits. PE microplastics increased, but PA and PLA microplastics decreased the Cr accumulation in cucumber. Microplastics, especially high-dose, small, and aged microplastics, exacerbated the effects of accumulated Cr in cucumber on fresh weight and fruit yield. The nutrient contents in fruits except soluble sugars were reduced by microplastics. The random forest regression model shows that the microplastic type was the most important factor causing changes in the soil-cucumber system except for Cr(VI) addition. Under Cr(VI) and microplastic co-exposure, bacteria that could simultaneously tolerate Cr(VI) stress and degrade microplastics were enriched in the rhizosphere soil. The partial least squares path model shows that microplastics reduced the beneficial effect of the bacterial community on cucumber growth. Microplastics, especially PLA microplastics, alleviated the adverse effects of Cr(VI) stress on root metabolism.


Subject(s)
Chromium , Cucumis sativus , Microplastics , Plastics , Fruit , Rhizosphere , Soil , Bacteria , Polyesters
4.
Environ Pollut ; 338: 122724, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37832780

ABSTRACT

Decabromodiphenyl ethane (DBDPE) as the most widely used novel brominated flame retardants (NBFRs), has become a ubiquitous emerging pollutant in the environment. However, its toxic effects on vegetable growth during agricultural production have not been reported. In this study, we investigated the response mechanisms of hydroponic lettuce to DBDPE accumulation, antioxidant stress, cell structure damage, and metabolic pathways after exposure to DBDPE. The concentration of DBDPE in the root of lettuce was significantly higher than that in the aboveground part. DBDPE induced oxidative stress on lettuce, which stimulated the defense of the antioxidative system of lettuce cells, and the cell structure produced slight plasma-wall separation. In terms of metabolism, metabolic pathway disorders were caused, which are mainly manifested as inhibiting amino acid biosynthesis and metabolism-related pathways, interfering with the biosyntheses of amino acids, organic acids, fatty acids, carbohydrates, and other substances, and ultimately manifested as decreased total chlorophyll content and root activity. In turn, metabolic regulation alleviated antioxidant stress. The mechanisms of the antioxidative reaction of lettuce to DBDPE were elucidated by IBR, PLS-PM analysis, and molecular docking. Our results provide a theoretical basis and research necessity for the evaluation of emerging pollutants in agricultural production and the safety of vegetables.


Subject(s)
Environmental Pollutants , Flame Retardants , Antioxidants/pharmacology , Lactuca , Molecular Docking Simulation , Bromobenzenes/analysis , Oxidative Stress , Environmental Pollutants/analysis , Flame Retardants/toxicity , Flame Retardants/analysis , Halogenated Diphenyl Ethers/toxicity , Halogenated Diphenyl Ethers/analysis
5.
Chemosphere ; 341: 140008, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37660786

ABSTRACT

Nickel (Ni), as one of the essential micronutrients, exists widely in nature, but high concentration of Ni in soil can pose certain biological toxicity. Nano zero-valent iron (nZVI) and rhamnolipid modified nZVI (RL@nZVI) can effectively stabilize Ni in soil. In this study, the stabilization effect of nZVI and RL@nZVI on the Ni-polluted soil under simulated acid rain and the microbial community response during the soil remediation under different Ni levels (200, 600, and 1800 mg/kg) were investigated. The results show that the addition of nZVI and RL@nZVI increased the pH of leachate to neutral and decreased the amount of Ni in leachate (23.33%-47.06% by nZVI and 50.01%-70.47% by RL@nZVI), indicating that nZVI and RL@nZVI could reduce the potential radial migration risk of Ni in soil under simulated acid rain. The addition of RL@nZVI was beneficial to recover the soil bacterial community diversity, which was inhibited by Ni pollution, and rhamnolipid coating could reduce the toxicity of nZVI. The dominant bacteria in RL@nZVI-treated soil with low, medium, and high Ni pollution were Firmicutes, Proteobacteria and Actinobacteria, respectively. Soil potential, total organic carbon, and pH were the main driving factors affecting the bacterial community structure, while Ni stress only caused changes in the relative abundance of some tolerant bacteria.


Subject(s)
Acid Rain , Nickel/toxicity , Iron , Soil
6.
Sci Total Environ ; 887: 164204, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37196961

ABSTRACT

DBDPE and Cd are representative contaminants commonly found in electronic waste (e-waste), which tend to be gradually discharged and accumulated in the environment during e-waste dismantling, resulting in frequent outbreaks and detection of these pollutants. The toxicity of both chemicals to vegetables after combined exposure has not been determined. The accumulation and mechanisms of phytotoxicity of the two compounds, alone and in combination, were studied using lettuce. The results showed that the enrichment ability of Cd and DBDPE in root was significantly higher than that in aerial part. Exposure to 1 mg/L Cd + DBDPE reduced the toxicity of Cd to lettuce, while exposure to 5 mg/L Cd + DBDPE increased the toxicity of Cd to lettuce. The absorption of Cd in the underground part of lettuce of 5 mg/L Cd + DBDPE was significantly increased by 108.75 % compared to 5 mg/L Cd. The significant enhancement of antioxidant system activity in lettuce under 5 mg/L Cd + DBDPE exposure, and the root activity and total chlorophyll content were decreased by 19.62 % and 33.13 %, respectively, compared to the control. At the same time, the organelles and cell membranes of lettuce root and leaf were significantly damaged, which was significantly worse than that of single Cd and DBDPE treatment. Combined exposure significantly affected the pathways related to amino acid metabolism, carbon metabolism and ABC transport in lettuce. This study filled the safety gap of DBDPE and Cd combined exposure on vegetables and would provide a theoretical basis for the environmental behavior and toxicological study of DBDPE and Cd.


Subject(s)
Cadmium , Lactuca , Lactuca/metabolism , Cadmium/metabolism , Vegetables/metabolism , Antioxidants/metabolism , Metabolomics
7.
J Hazard Mater ; 450: 131022, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36857824

ABSTRACT

Microplastics (MPs) in farmland soil may affect the environmental fate and toxicity of heavy metals; however, how non-biodegradable and biodegradable MPs change the accumulation and phytotoxicity of Cr(VI) to the plants is still unknown. In this study, we explored the impacts of Cr(VI) concentrations (0, 20, 50, 100, 200, and 500 µmol/L), MP types (polyethylene (PE), polyamide (PA), and polylactic acid (PLA)), sizes (13, 48, and 500 µm), and concentrations (40, 200, and 1000 mg/L) on the Cr accumulation and toxicity to cucumber (Cucumis sativus L.) under hydroponic conditions for 14 days. The results show that the presence of PE-MPs promoted the Cr accumulation in root by 8-39.8%. However, PA-MPs inhibited the Cr accumulation in the whole plant under less than 100 µmol/L Cr(VI). Notably, 1000 mg/L PA-MPs significantly reduced Cr accumulation in root and stem by 44.70% and 48.20%, respectively. Moreover, PE-MPs and PLA-MPs reduced the chlorophyll content and slowed down the growth of seedlings, while PA-MPs were beneficial to the growth of cucumber under 50-500 µmol/L Cr(VI) treatments, increasing the biomass by 20.99-189.99%. Furthermore, PE-MPs enhanced the content of MDA, especially under 500 µmol/L Cr(VI) concentration by 27.39%; however, the addition of PA-MPs and PLA-MPs slightly enhanced the enzyme activities including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT). Significantly, 1000 mg/L PA-MPs promoted biomass and reduced MDA content compared the control due to their high Cr(VI) adsorption efficiency. Thus, MP type, especially PE-MPs, mainly determined the Cr accumulation and phytotoxicity, which was attributed to the various adsorption capacities of MPs to Cr(VI).


Subject(s)
Cucumis sativus , Microplastics , Microplastics/pharmacology , Plastics , Nylons , Polyethylene/pharmacology , Hydroponics , Polyesters
8.
J Hazard Mater ; 443(Pt B): 130259, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36335901

ABSTRACT

Sulfidation effectively improves the electron transfer efficiency of nanoscale zero-valent iron (nZVI), but decreases the specific surface area of nZVI. In this study, sulfidated nZVI (S-nZVI) coated with rhamnolipid (RL-S-nZVI) was synthesized and used to stabilize Pb, Cd, and As in combined polluted soil. The stabilization efficiency of 0.3% (wt) RL-S-nZVI to water soluble Pb, Cd, and As in soil reached 88.76%, 72%, and 63%, respectively. Rhamnolipid coating inhibited the reduction of specific surface area and successfully encapsulated nZVI, thus reducing the oxidation of Fe0. The types of iron oxides in RL-S-nZVI were reduced compared to S-nZVI, but the content and strength of Fe0 iron were obviously enhanced. Furthermore, rhamnolipid functional groups (-COOH and -COO-) were also involved in the stabilization process. In addition, the stabilization efficiency of RL-S-nZVI to the bioavailable Pb, Cd, and As in soil increased by 41%, 41%, and 50%, respectively, compared with nZVI. The presence of organic acids, especially citric acid, improved the stabilization efficiency of RL-S-nZVI to the three metals. The result of BCR sequential extraction indicated that RL-S-nZVI increased the residual state of Pb, Cd, and As and reduced the acid-soluble and reducible state after 28 days of soil incubation. XRD and XPS analyses showed that the stabilization mechanisms of RL-S-nZVI on heavy metals involved in ion exchange, surface complexation, adsorption, co-precipitation, chemisorption, and redox.


Subject(s)
Iron , Soil Pollutants , Iron/analysis , Soil , Cadmium/analysis , Lead/analysis , Soil Pollutants/analysis
9.
Mar Pollut Bull ; 186: 114492, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36535232

ABSTRACT

The adsorption, desorption, and their influence factors of Cr(VI) by microplastics (MPs) in the solution was investigated in this study. The results demonstrated that UV aging promoted adsorption, while the increase of salinity and natural organic matter (NOM) inhibited adsorption. The particle size affected the total Cr(VI) active adsorption sites on MPs, while the pH changed the electrostatic force. The Cr(VI) adsorption by MPs conformed to the pseudo-first and pseudo-second order kinetic models, and was monolayer and inhomogeneous. SEM-EDS, XPS and ATR-FTIR analyses demonstrated that the physical adsorption dominated the adsorption process. Especially, the highest adsorption capacity of Cr(VI) by polyamide (PA) MPs was attributed to their hydrophilic amide groups. However, Cr(VI) was only released from PA MPs, of which desorption rate followed the sequence of seawater (79.5 %) > fresh water (66.6 %) > deionized water (34.8 %). Thus, PA MPs might be non-negligible environmental vectors for the transport of Cr(VI).


Subject(s)
Microplastics , Water Pollutants, Chemical , Polyethylene , Plastics , Nylons , Polypropylenes , Adsorption , Water Pollutants, Chemical/analysis
10.
Chemosphere ; 313: 137453, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36464022

ABSTRACT

Magnesium-aluminum modified biochar (MABs) has an outstanding effect on the simultaneous immobilization of arsenic (As), lead (Pb), and cadmium (Cd) in soil, but the stability of remediation effect of MAB under various natural conditions is still unknown. In this study, we investigated the effects of organic acids, dry-wet cycles (DW), freeze-thaw cycles (FT), and rainfall (pH 4, 7, and 8) on the immobilization of As, Pb, and Cd by MAB. The results showed that oxalic acid decreased the immobilization efficiencies of As, Pb, and Cd by 15.5%-38.5%; meanwhile, humic acid reduced the immobilization efficiency of Pb by 89.7%, but elevated that of Cd by 19.5%. The immobilization mechanisms of MAB-5 on three metals were mainly involved in ion exchange and surface-complexation. Compared with the 7th round, the immobilization efficiencies of As, Pb, and Cd by MAB in the 28th round was decreased by 17%-28% in DW, but was increased by 11%-18% in FT. In addition, MAB was transformed into hydrotalcite after FT and DW. After experiencing simulated rainfall, MAB caused more As, Pb, and Cd to be retained in the upper soil layer, and the immobilization effect of MBA was more significant under the stimulated rainfall with higher pH. The study provides a more theoretical basis for the application of MAB in the actual site remediation.


Subject(s)
Arsenic , Soil Pollutants , Cadmium/analysis , Soil , Magnesium , Aluminum , Lead , Soil Pollutants/analysis , Charcoal , Organic Chemicals
SELECTION OF CITATIONS
SEARCH DETAIL
...