Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.062
Filter
1.
Conserv Biol ; : e14310, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842221

ABSTRACT

Climate change may diminish biodiversity; thus, it is urgent to predict how species' ranges may shift in the future by integrating multiple factors involving more taxa. Bats are particularly sensitive to climate change due to their high surface-to-volume ratio. However, few studies have considered geographic variables associated with roost availability and even fewer have linked the distributions of bats to their thermoregulation and energy regulation traits. We used species distribution models to predict the potential distributions of 12 bat species in China under current and future greenhouse gas emission scenarios (SSP1-2.6 and SSP5-8.5) and examined factors that could affect species' range shifts, including climatic, geographic, habitat, and human activity variables and wing surface-to-mass ratio (S-MR). The results suggest that Ia io, Rhinolophus ferrumequinum, and Rhinolophus rex should be given the highest priority for conservation in future climate conservation strategies. Most species were predicted to move northward, except for I. io and R. rex, which moved southward. Temperature seasonality, distance to forest, and distance to karst or cave were the main environmental factors affecting the potential distributions of bats. We found significant relationships between S-MR and geographic distribution, current potential distribution, and future potential distribution in the 2050s. Our work highlights the importance of analyzing range shifts of species with multifactorial approaches, especially for species traits related to thermoregulation and energy regulation, to provide targeted conservation strategies.


Patrones y correlaciones de los cambios potenciales en la distribución de las especies de murciélago de China en el contexto del cambio climático Resumen El cambio climático puede disminuir la biodiversidad, por lo que es urgente pronosticar cómo puede cambiar en el futuro la distribución de las especies mediante la integración de múltiples factores que involucren a más taxones. Los murciélagos son particularmente sensibles al cambio climático debido a que tienen una gran proporción superficie­volumen. Sin embargo, hay pocos estudios que han considerado las variables asociadas con la disponibilidad de nidos y son todavía menos los que han conectado la distribución de los murciélagos con sus rasgos de termorregulación y regulación de energía. Usamos modelos de distribución de especies para pronosticar la distribución potencial de doce especies de murciélago en China bajo escenarios actuales y futuros de emisión de gases de efecto invernadero (SSP1­2.6 y SSP5­8.5) y analizamos los factores que podrían afectar el cambio en la distribución de las especies, incluyendo las variables climáticas, geográficas, de hábitat y de actividad humana y la proporción entre la superficie del ala y la masa (P S­M). Los resultados sugieren que Ia io, Rhinolophus ferrumequinum y R. rex deberían ser la mayor prioridad de conservación para las estrategias de conservación climáticas en el futuro. Pronosticamos que la mayoría de las especies se desplazarían al norte, a excepción de I. io y R. rex, que se desplazarían hacia el sur. Los principales factores que afectaron la distribución potencial de los murciélagos fueron la estacionalidad de la temperatura, la distancia al bosque y la distancia a la cueva o al karst. Encontramos una relación significativa entre la P S­M y la distribución geográfica, la distribución potencial actual y la distribución potencial para la década de 2050. Nuestra investigación destaca la importancia del análisis de los cambios de distribución de las especies con enfoques multifactoriales, especialmente para los rasgos de especie relacionados con la termorregulación y la regulación de energía, para proporcionar estrategias de conservación focalizadas.

2.
Nature ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718837

ABSTRACT

The properties of polycrystalline materials are often dominated by defects, and two-dimensional (2D) crystals can even be divided and disrupted by a line defect1-3. In contrast, 2D crystals are often required to be processed into films, which are inevitably polycrystalline and contain numerous grain boundaries, and therefore are brittle and fragile, hindering application in flexible electronics, optoelectronics and separation1-4. Moreover, similar to glass, wood, and plastics, they suffer from trade-off effects between mechanical strength and toughness.5, 6 Here, we report a method to produce highly strong, tough and elastic films of an emerging class of 2D crystals - 2D covalent organic frameworks (COFs) composed of single-crystal domains connected by interwoven grain boundary on water surface using an aliphatic bi-amine as a sacrificial go-between. Films of two 2DCOFs were demonstrated, which showed Young's moduli and breaking strength of 56.7 ± 7.4 GPa and 73.4 ± 11.6 GPa, and 82.2 ± 9.1 N/m and 29.5 ± 7.2 N/m, respectively. We envisage the sacrificial go-between guided synthesis method and the interwoven grain boundary will inspire grain boundary enigineering of various polycrystalline materials, endowing them with new properties, enhancing their current applications and paving the way for new applications.

3.
Adv Healthc Mater ; : e2400945, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38794820

ABSTRACT

Unravelling the mechanisms for the immunosuppressive tumor microenvironment and developing corresponding therapeutic strategies are of great importance to improve the cancer immunotherapy. This study has revealed that there are abundant senescent cells accumulated in the colon cancer tissue, which contributes greatly to the immunosuppressive microenvironment. Oral delivery of Dasatinib and Quercetin (D+Q) eliminates the senescent cells with compromised efficiency due to the poor tumor penetration and short half-life. To improve the efficacy of senescent cell clearance, this work has developed an extracellular vesicle (EV) based senolytic strategy. The engineered senolytic EVs have anti-GPNMB (a senescent cell surface marker) displayed on the surface and D+Q loaded on the membrane. In a syngeneic mouse model, senolytic EVs efficiently and selectively eradicate the senescent cells and in turn unleashes the antitumor immunity. With the antitumor immunity boosted, cancer growth is inhibited and the survival is prolonged. In summary, this work has illuminated that senescent cells contribute to the immunosuppressive microenvironment in colon cancer and proposes a novel strategy to conquer the problem by EV-based senolytics.

4.
Chemosphere ; 358: 142193, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697562

ABSTRACT

Biochar has been utilized to reduce ciprofloxacin (CIP) residues in soil. However, little is known about the effect of biochar-derived dissolved organic matter (DOM) on residual CIP transformation. Thus, we analyzed the residual soil CIP as influenced by biochar generated from rice straw (RS3 and RS6), pig manure (PM3 and PM6), and cockroach shell (CS3 and CS6) at 300 °C and 600 °C. The three-dimensional excitation-emission matrix (3D-EEM), parallel factor analysis (PARAFAC) and two-dimensional correlation spectral analysis (2D-COS) were used to describe the potential variation in the DOM-CIP interaction. Compared with CK, biochar amendment increased the water-soluble CIP content by 160.7% (RS3), 55.2% (RS6), 534.1% (PM3), 277.5% (PM6), 1160.6% (CS3) and 703.9% (CS6), indicating that the biochar feedstock controlled the soil CIP release. The content of water-soluble CIP was positively correlated with the content of dissolved organic carbon (r = 0.922, p < 0.01) and dissolved organic nitrogen (r = 0.898, p < 0.01), suggesting that the major influence of the water-soluble CIP increase was DOM. The fluorescence quenching experiment showed that the interaction between DOM and CIP triggered static quenching and the creation of a DOM complex. The mean log K of protein-like material (4.977) was higher than that of terrestrial humus-like material (3.491), suggesting that the protein-like material complexed CIP was more stable than the humus-like material. Compared with pyrolysis at 300 °C, pyrolysis at 600 °C decreased the stability of the complex of protein-like material and CIP by 0.44 (RS), 1.689 (PM) and 0.548 (CS). This result suggested that the influence of temperature change was more profound on PM biochar-derived DOM than on RS and CS. These insights are essential for understanding CIP transportation in soil and controlling CIP contamination with biochar.


Subject(s)
Charcoal , Ciprofloxacin , Soil Pollutants , Soil , Charcoal/chemistry , Soil/chemistry , Ciprofloxacin/chemistry , Ciprofloxacin/analysis , Soil Pollutants/chemistry , Soil Pollutants/analysis , Animals , Manure/analysis , Oryza/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/analysis , Swine
5.
Biosens Bioelectron ; 259: 116385, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38759310

ABSTRACT

Cell-substrate interaction plays a critical role in determining the mechanical status of living cell membrane. Changes of substrate surface properties can significantly alter the cell mechanical microenvironment, leading to mechanical changes of cell membrane. However, it is still difficult to accurately quantify the influence of the substrate surface properties on the mechanical status of living cell membrane without damage. This study addresses the challenge by using an electrochemical sensor made from an ultrasmall quartz nanopipette. With the tip diameter less than 100 nm, the nanopipette-based sensor achieves highly sensitive, noninvasive and label-free monitoring of the mechanical status of single living cells by collecting stable cyclic membrane oscillatory signals from continuous current versus time traces. The electrochemical signals collected from PC12 cells cultured on three different substrates (bare ITO (indium tin oxides) glass, hydroxyl modified ITO glass, amino modified ITO glass) indicate that the microenvironment more favorable for cell adhesion can increase the membrane stiffness. This work provides a label-free electrochemical approach to accurately quantify the mechanical status of single living cells in real-time, which may help to better understand the relationship between the cell membrane and the extra cellular matrix.


Subject(s)
Biosensing Techniques , Cell Membrane , Electrochemical Techniques , Tin Compounds , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Animals , Rats , PC12 Cells , Tin Compounds/chemistry , Electrochemical Techniques/methods , Cell Membrane/chemistry , Cell Adhesion , Vibration , Surface Properties , Equipment Design
6.
Adv Mater ; : e2400810, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38569213

ABSTRACT

The catalytic activation of the Li-S reaction is fundamental to maximize the capacity and stability of Li-S batteries (LSBs). Current research on Li-S catalysts mainly focuses on optimizing the energy levels to promote adsorption and catalytic conversion, while frequently overlooking the electronic spin state influence on charge transfer and orbital interactions. Here, hollow NiS2/NiSe2 heterostructures encapsulated in a nitrogen-doped carbon matrix (NiS2/NiSe2@NC) are synthesized and used as a catalytic additive in sulfur cathodes. The NiS2/NiSe2 heterostructure promotes the spin splitting of the 3d orbital, driving the Ni3+ transformation from low to high spin. This high spin configuration raises the electronic energy level and activates the electronic state. This accelerates the charge transfer and optimizes the adsorption energy, lowering the reaction energy barrier of the polysulfides conversion. Benefiting from these characteristics, LSBs based on NiS2/NiSe2@NC/S cathodes exhibit high initial capacity (1458 mAh·g⁻1 at 0.1C), excellent rate capability (572 mAh·g⁻1 at 5C), and stable cycling with an average capacity decay rate of only 0.025% per cycle at 1C during 500 cycles. Even at high sulfur loadings (6.2 mg·cm⁻2), high initial capacities of 1173 mAh·g⁻1 (7.27 mAh·cm⁻2) are measured at 0.1C, and 1058 mAh·g⁻1 is retained after 300 cycles.

7.
Am J Cancer Res ; 14(3): 1278-1291, 2024.
Article in English | MEDLINE | ID: mdl-38590404

ABSTRACT

This study aims to evaluate the effects of Omaha System framework interventions on quality of life, emotional well-being, and sleep quality in 507 mid to late-stage lung cancer patients. Retrospectively, we compared data of 294 patients receiving conventional care (conventional group) with 213 patients undergoing Omaha System interventions (intervention group) from January 2019 to January 2023. Key indicators included quality of life (FACT-L), anxiety (SAS), depression (SDS), sleep quality (PSQI), hope (HHS), and dignity (PDI). Post-intervention, the intervention group showed a significant increase in FACT-L scores (P<0.001), indicating enhanced quality of life. There was a notable reduction in PSQI scores (P<0.001), suggesting improved sleep quality. Additionally, their anxiety and depression levels significantly decreased, as evidenced by lower SAS (P<0.001) and SDS scores (P<0.001). Logistic regression revealed that care nursing intervention scheme (P=0.007), age (P=0.008), marital status (P=0.002), per capita monthly household income (P=0.004), SAS after intervention (P=0.002), and PSQI after intervention (P=0.002) had a positive influence on quality of life. In conclusion, the Omaha System interventions markedly improved the quality of life, emotional state, and sleep in lung cancer patients.

8.
Heliyon ; 10(8): e27422, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644883

ABSTRACT

Background: Recent genetic evidence supports that circulating biochemical and metabolic traits (BMTs) play a causal role in Alzheimer's disease (AD), which might be mediated by changes in brain structure. Here, we leveraged publicly available genome-wide association study data to investigate the intrinsic causal relationship between blood BMTs, brain image-derived phenotypes (IDPs) and AD. Methods: Utilizing the genetic variants associated with 760 blood BMTs and 172 brain IDPs as the exposure and the latest AD summary statistics as the outcome, we analyzed the causal relationship between blood BMTs and brain IDPs and AD by using a two-sample Mendelian randomization (MR) method. Additionally, we used two-step/mediation MR to study the mediating effect of brain IDPs between blood BMTs and AD. Results: Twenty-five traits for genetic evidence supporting a causal association with AD were identified, including 12 blood BMTs and 13 brain IDPs. For BMTs, glutamine consistently reduced the risk of AD in 3 datasets. For IDPs, specific alterations of cortical thickness (atrophy in frontal pole and insular lobe, and incrassation in superior parietal lobe) and subcortical volume (atrophy in hippocampus and its subgroups, left accumbens and left choroid plexus, and expansion in cerebral white matter) are vulnerable to AD. In the two-step/mediation MR analysis, superior parietal lobe, right hippocampal fissure and left accumbens were identified to play a potential mediating role among three blood BMTs and AD. Conclusions: The results obtained in our study suggest that 12 circulating BMTs and 13 brain IDPs play a causal role in AD. Importantly, a subset of BMTs exhibit shared genetic architecture and potentially causal relationships with brain structure, which may contribute to the alteration of brain IDPs in AD.

9.
Ying Yong Sheng Tai Xue Bao ; 35(3): 731-738, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646761

ABSTRACT

The construction of a yield loss evaluation index for the cold vortex type light-temperature-water composite adversity during rice flowering period in Northeast China is important for elucidating the impacts of cold vortex type composite disasters on rice yield loss in middle and high latitude areas. Moreover, it can provide meteorological support to ensure safe production of high-quality japonica rice in China and contribute to regional disaster reduction and efficiency improvement. By combining growth period data, meteorological data, and yield data, we delineated and constructed the composite stress occurrence index of cold vortex type light-temperature-water at the flowering stage of japonica. We analyzed the relationship between factors causing disasters and yield structure, as well as the relationship between different yield structures and yield by employing BP neural network method. We further dissected the processes involved in the causation of combined disasters. Based on the K-means clustering method and historical typical disaster years, we quantified the critical thresholds and disaster grades, and established an evaluation index and model for assessing yield loss caused by combined stress from cold vortex type light-temperature-water. Finally, we examined the spatial and temporal variations of low temperature, abundant rainfall, and reduced sunlight during the flowering period in the three provinces of Northeast China. Results showed that the critical thresholds for light, temperature, and water stress index during the flowering stage of mild, moderate, and severe cold vortex types were [0, 0.21), [0.21, 0.32), and [0.32, 0.64], respectively. The rates of yield loss were [0, 0.03), [0.03, 0.08), and [0.08, 0.096], respectively. Based on the verification results of a total of 751 samples in 11 random years from 1961 to 2020, the percentage of stations for which the production reduction grade, as calculated by the composite index developed in this study, aligning with the actual production reduction grade was 63.7%, consistently exceeding 58.0% annually. Moreover, the proportion of sites with a similarity or difference level of 1 stood at 88.3%, surpassing 85.0% in each year. The index could effectively assess the extent of rice yield loss caused by cold vortex disasters in Northeast China.


Subject(s)
Cold Temperature , Flowers , Oryza , Oryza/growth & development , China , Flowers/growth & development , Stress, Physiological , Water/analysis , Light , Disasters
10.
Br J Haematol ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671583

ABSTRACT

There is an urgent need for an oral, efficient and safe regimen for high-risk APL under the pandemic of COVID-19. We retrospectively analysed 60 high-risk APL patients. For induction therapy (IT), in addition to all-trans retinoic acid (ATRA) and oral arsenic (RIF), 22 patients received oral etoposide (VP16) as cytotoxic chemotherapy (CC), and 38 patients received intravenous CC as historical control group. The median dose of oral VP16 was 1000 mg [interquartile rage (IQR), 650-1250]. One patient died during IT in the control group, 59 evaluable patients (100%) achieved complete haematological remission (CHR) after IT and complete molecular remission (CMR) after consolidation therapy. The median time to CHR and CMR was 36 days (33.8-44) versus 35 days (32-42; p = 0.75) and 3 months (0.8-3.5) versus 3.3 months (2.4-3.7; p = 0.58) in the oral VP16 group and in the control group. Two (9.1%) and 3 (7.9%) patients experienced molecular relapse in different group respectively. The 2-year estimated overall survival and event-free survival were 100% versus 94.7% (p = 0.37) and 90.9% versus 89.5% (p = 0.97) respectively. A completely oral, efficient and safe induction regimen including oral VP16 as cytoreductive chemotherapy combined with ATRA and RIF is more convenient to administer for patients with high-risk APL.

11.
Genome Med ; 16(1): 49, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566201

ABSTRACT

BACKGROUND: The efficacy of neoadjuvant chemo-immunotherapy (NAT) in esophageal squamous cell carcinoma (ESCC) is challenged by the intricate interplay within the tumor microenvironment (TME). Unveiling the immune landscape of ESCC in the context of NAT could shed light on heterogeneity and optimize therapeutic strategies for patients. METHODS: We analyzed single cells from 22 baseline and 24 post-NAT treatment samples of stage II/III ESCC patients to explore the association between the immune landscape and pathological response to neoadjuvant anti-PD-1 combination therapy, including pathological complete response (pCR), major pathological response (MPR), and incomplete pathological response (IPR). RESULTS: Single-cell profiling identified 14 major cell subsets of cancer, immune, and stromal cells. Trajectory analysis unveiled an interesting link between cancer cell differentiation and pathological response to NAT. ESCC tumors enriched with less differentiated cancer cells exhibited a potentially favorable pathological response to NAT, while tumors enriched with clusters of more differentiated cancer cells may resist treatment. Deconvolution of transcriptomes in pre-treatment tumors identified gene signatures in response to NAT contributed by specific immune cell populations. Upregulated genes associated with better pathological responses in CD8 + effector T cells primarily involved interferon-gamma (IFNγ) signaling, neutrophil degranulation, and negative regulation of the T cell apoptotic process, whereas downregulated genes were dominated by those in the immune response-activating cell surface receptor signaling pathway. Natural killer cells in pre-treatment tumors from pCR patients showed a similar upregulation of gene expression in response to IFNγ but a downregulation of genes in the neutrophil-mediated immunity pathways. A decreased cellular contexture of regulatory T cells in ESCC TME indicated a potentially favorable pathological response to NAT. Cell-cell communication analysis revealed extensive interactions between CCL5 and its receptor CCR5 in various immune cells of baseline pCR tumors. Immune checkpoint interaction pairs, including CTLA4-CD86, TIGIT-PVR, LGALS9-HAVCR2, and TNFSF4-TNFRSF4, might serve as additional therapeutic targets for ICI therapy in ESCC. CONCLUSIONS: This pioneering study unveiled an intriguing association between cancer cell differentiation and pathological response in esophageal cancer patients, revealing distinct subgroups of tumors for which neoadjuvant chemo-immunotherapy might be effective. We also delineated the immune landscape of ESCC tumors in the context of clinical response to NAT, which provides clinical insights for better understanding how patients respond to the treatment and further identifying novel therapeutic targets for ESCC patients in the future.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/therapy , Neoadjuvant Therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/therapy , Immunotherapy , Combined Modality Therapy , Tumor Microenvironment , OX40 Ligand
12.
Theor Appl Genet ; 137(5): 105, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622387

ABSTRACT

KEY MESSAGE: Two major-effect QTL GlcA07.1 and GlcA09.1 for green leaf color were fine mapped into 170.25 kb and 191.41 kb intervals on chromosomes A07 and A09, respectively, and were validated by transcriptome analysis. Non-heading Chinese cabbage (NHCC) is a leafy vegetable with a wide range of green colors. Understanding the genetic mechanism behind broad spectrum of green may facilitate the breeding of high-quality NHCC. Here, we used F2 and F7:8 recombination inbred line (RIL) population from a cross between Wutacai (dark-green) and Erqing (lime-green) to undertake the genetic analysis and quantitative trait locus (QTL) mapping in NHCC. The genetic investigation of the F2 population revealed that the variation of green leaf color was controlled by two recessive genes. Six pigments associated with green leaf color, including total chlorophyll, chlorophyll a, chlorophyll b, total carotenoids, lutein, and carotene were quantified and applied for QTL mapping in the RIL population. A total of 7 QTL were detected across the whole genome. Among them, two major-effect QTL were mapped on chromosomes A07 (GlcA07.1) and A09 (GlcA09.1) corresponding to two QTL identified in the F2 population. The QTL GlcA07.1 and GlcA09.1 were further fine mapped into 170.25 kb and 191.41 kb genomic regions, respectively. By comparing gene expression level and gene annotation, BraC07g023810 and BraC07g023970 were proposed as the best candidates for GlcA07.1, while BraC09g052220 and BraC09g052270 were suggested for GlcA09.1. Two InDel molecular markers (GlcA07.1-BcGUN4 and GlcA09.1-BcSG1) associated with BraC07gA023810 and BraC09g052220 were developed and could effectively identify leaf color in natural NHCC accessions, suggesting their potential for marker-assisted leaf color selection in NHCC breeding.


Subject(s)
Brassica , Quantitative Trait Loci , Chlorophyll A , Plant Breeding , Plant Leaves/genetics , Carotenoids , Brassica/genetics , Genetic Association Studies
13.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673941

ABSTRACT

Abdominal aortic aneurysm (AAA) is a serious vascular disease which is associated with vascular remodeling. CD38 is a main NAD+-consuming enzyme in mammals, and our previous results showed that CD38 plays the important roles in many cardiovascular diseases. However, the role of CD38 in AAA has not been explored. Here, we report that smooth-muscle-cell-specific deletion of CD38 (CD38SKO) significantly reduced the morbidity of AngII-induced AAA in CD38SKOApoe-/- mice, which was accompanied with a increases in the aortic diameter, medial thickness, collagen deposition, and elastin degradation of aortas. In addition, CD38SKO significantly suppressed the AngII-induced decreases in α-SMA, SM22α, and MYH11 expression; the increase in Vimentin expression in VSMCs; and the increase in VCAM-1 expression in smooth muscle cells and macrophage infiltration. Furthermore, we demonstrated that the role of CD38SKO in attenuating AAA was associated with the activation of sirtuin signaling pathways. Therefore, we concluded that CD38 plays a pivotal role in AngII-induced AAA through promoting vascular remodeling, suggesting that CD38 may serve as a potential therapeutic target for the prevention of AAA.


Subject(s)
ADP-ribosyl Cyclase 1 , Angiotensin II , Aortic Aneurysm, Abdominal , Mice, Knockout , Myocytes, Smooth Muscle , Vascular Remodeling , Animals , Male , Mice , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/genetics , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Disease Models, Animal , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Signal Transduction , Vascular Remodeling/genetics
14.
PeerJ ; 12: e17228, 2024.
Article in English | MEDLINE | ID: mdl-38618564

ABSTRACT

Background: Driving is a complex skill involving various cognitive activities. Previous research has explored differences in the brain structures related to the navigational abilities of drivers compared to non-drivers. However, it remains unclear whether changes occur in the structures associated with low-level sensory and higher-order cognitive abilities in drivers. Methods: Gray matter volume, assessed via voxel-based morphometry analysis of T1-weighted images, is considered a reliable indicator of structural changes in the brain. This study employs voxel-based morphological analysis to investigate structural differences between drivers (n = 22) and non-drivers (n = 20). Results: The results indicate that, in comparison to non-drivers, drivers exhibit significantly reduced gray matter volume in the middle occipital gyrus, middle temporal gyrus, supramarginal gyrus, and cerebellum, suggesting a relationship with driving-related experience. Furthermore, the volume of the middle occipital gyrus, and middle temporal gyrus, is found to be marginally negative related to the years of driving experience, suggesting a potential impact of driving experience on gray matter volume. However, no significant correlations were observed between driving experiences and frontal gray matter volume. Conclusion: These findings suggest that driving skills and experience have a pronounced impact on the cortical areas responsible for low-level sensory and motor processing. Meanwhile, the influence on cortical areas associated with higher-order cognitive function appears to be minimal.


Subject(s)
Brain , Gray Matter , Gray Matter/diagnostic imaging , Brain/diagnostic imaging , Cerebellum , Cognition , Occipital Lobe/diagnostic imaging
15.
Cell Commun Signal ; 22(1): 223, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594728

ABSTRACT

BACKGROUND: Autophagy is a lysosome-dependent degradation pathway that regulates macrophage activation, differentiation, and polarization. Autophagy related 5 (Atg5) is a key protein involved in phagocytic membrane elongation in autophagic vesicles that forms a complex with Atg12 and Atg16L1. Alterations in Atg5 are related to both acute and chronic kidney diseases in experimental models. However, the role of macrophage-expressed Atg5 in acute kidney injury remains unclear. METHODS: Using a myeloid cell-specific Atg5 knockout (MΦ atg5-/-) mouse, we established renal ischemia/reperfusion and unilateral ureteral obstruction models to evaluate the role of macrophage Atg5 in renal macrophage migration and fibrosis. RESULTS: Based on changes in the serum urea nitrogen and creatinine levels, Atg5 deletion had a minimal effect on renal function in the early stages after mild injury; however, MΦ atg5-/- mice had reduced renal fibrosis and reduced macrophage recruitment after 4 weeks of ischemia/reperfusion injury and 2 weeks of unilateral ureteral obstruction injury. Atg5 deficiency impaired the CCL20-CCR6 axis after severe ischemic kidneys. Chemotactic responses of bone marrow-derived monocytes (BMDMs) from MΦ atg5-/- mice to CCL20 were significantly attenuated compared with those of wild-type BMDMs, and this might be caused by the inhibition of PI3K, AKT, and ERK1/2 activation. CONCLUSIONS: Our data indicate that Atg5 deficiency decreased macrophage migration by impairing the CCL20-CCR6 axis and inhibited M2 polarization, thereby improving kidney fibrosis.


Subject(s)
Ureteral Obstruction , Animals , Mice , Autophagy-Related Protein 5/metabolism , Fibrosis , Ischemia/metabolism , Kidney/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Receptors, CCR6/metabolism , Ureteral Obstruction/complications , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology
16.
Int J Womens Health ; 16: 519-525, 2024.
Article in English | MEDLINE | ID: mdl-38544782

ABSTRACT

Purpose: Meigs' syndrome is a rare gynecological disease characterized by the triad of benign ovarian tumor, ascites, and pleural effusion. Ovarian malignancies should be highly suspected in a postmenopausal woman with a pelvic mass, ascites, hydrothorax, and an elevated carbohydrate antigen 125 (CA125) level. It can be challenging to make a preoperative diagnosis of Meigs' syndrome. In this report, we present a case of Meigs' syndrome caused by an ovarian fibrothecoma and review the relevant literature to raise awareness and avoid misdiagnosis. Case Presentation: An 82-year-old woman with a 2-week history of abdominal distension was admitted to the Department of Gynecology. Ultrasound and thoracoabdominal computed tomography scans showed a left-sided hypoechoic mass in the pelvic cavity with bilateral pleural effusion and massive ascites. The CA125 concentration was 1040 U/mL (normal, 0-35 U/mL). With a working diagnosis of ovarian malignancy, the patient underwent ultrasound-guided fine-needle puncture of the pelvic mass and paracentesis to drain the ascites. The fine-needle puncture and paracentesis fluid analysis results revealed that the ascites did not contain any tumor cells, and the pelvic mass was identified as a spindle cell tumor. Immunohistochemistry confirmed that it was a sex-cord stromal tumor. Total abdominal hysterectomy and bilateral adnexectomy were performed under general anesthesia. The pathology results confirmed the mass to have been an ovarian fibrothecoma. At the 2-month postoperative follow-up, the ascites and hydrothorax had resolved and not recurred, and the CA125 level was normal. Conclusion: Despite the high suspicion of ovarian carcinoma in postmenopausal women presenting with pelvic mass, ascites, pleural effusion, and elevated CA125, Meigs' syndrome should be considered.

17.
Front Oncol ; 14: 1360831, 2024.
Article in English | MEDLINE | ID: mdl-38529376

ABSTRACT

Background: Rapid On-Site Evaluation (ROSE) during flexible bronchoscopy (FB) can improve the adequacy of biopsy specimens and diagnostic yield of lung cancer. However, the lack of cytopathologists has restricted the wide use of ROSE. Objective: To develop a ROSE artificial intelligence (AI) system using deep learning techniques to differentiate malignant from benign lesions based on ROSE cytological images, and evaluate the clinical performance of the ROSE AI system. Method: 6357 ROSE cytological images from 721 patients who underwent transbronchial biopsy were collected from January to July 2023 at the Tangdu Hospital, Air Force Medical University. A ROSE AI system, composed of a deep convolutional neural network (DCNN), was developed to identify whether there were malignant cells in the ROSE cytological images. Internal testing, external testing, and human-machine competition were used to evaluate the performance of the system. Results: The ROSE AI system identified images containing lung malignant cells with the accuracy of 92.97% and 90.26% on the internal testing dataset and external testing dataset respectively, and its performance was comparable to that of the experienced cytopathologist. The ROSE AI system also showed promising performance in diagnosing lung cancer based on ROSE cytological images, with accuracy of 89.61% and 87.59%, and sensitivity of 90.57% and 94.90% on the internal testing dataset and external testing dataset respectively. More specifically, the agreement between the ROSE AI system and the experienced cytopathologist in diagnosing common types of lung cancer, including squamous cell carcinoma, adenocarcinoma, and small cell lung cancer, demonstrated almost perfect consistency in both the internal testing dataset (κ = 0.930) and the external testing dataset (κ = 0.932). Conclusions: The ROSE AI system demonstrated feasibility and robustness in identifying specimen adequacy, showing potential enhancement in the diagnostic yield of FB. Nevertheless, additional enhancements, incorporating a more diverse range of training data and leveraging advanced AI models with increased capabilities, along with rigorous validation through extensive multi-center randomized control assays, are crucial to guarantee the seamless and effective integration of this technology into clinical practice.

18.
Chemosphere ; 355: 141726, 2024 May.
Article in English | MEDLINE | ID: mdl-38521105

ABSTRACT

Polymer stabilization, exemplified by carboxymethyl cellulose (CMC), has demonstrated effectiveness in enhancing the transport of nanoscale zero-valent iron (nZVI). And, sulfidation is recognized for enhancing the reactivity and selectivity of nZVI in dechlorination processes. The influence of polymer stabilization on sulfidated nZVI (S-nZVI) with various sulfur precursors remains unclear. In this study, CMC-stabilized S-nZVI (CMC-S-nZVI) was synthesized using three distinct sulfur precursors (S2-, S2O42-, and S2O32-) through one-step approach. The antioxidant properties of CMC significantly elevated the concentration of reduced sulfur species (S2-) on CMC-S-nZVIs, marking a 3.1-7.0-fold increase compared to S-nZVIs. The rate of trichloroethylene degradation (km) by CMC-S-nZVIs was observed to be 2.2-9.0 times higher than that achieved by their non-stabilized counterparts. Among the three CMC-S-nZVIs, CMC-S-nZVINa2S exhibited the highest km. Interesting, while the electron efficiency of CMC-S-nZVIs surged by 7.9-12 times relative to nZVI, it experienced a reduction of 7.0-34% when compared with S-nZVIs. This phenomenon is attributed to the increased hydrophilicity of S-nZVI particles due to CMC stabilization, which inadvertently promotes the hydrogen evolution reaction (HER). In conclusion, the findings of this study underscores the impact of CMC stabilization on the properties and dechlorination performance of S-nZVI sulfidated using different sulfur precursors, offering guidance for engineering CMC-S-nZVIs with desirable properties for contaminated groundwater remediation.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Carboxymethylcellulose Sodium , Iron , Sulfur , Polymers
19.
Ultrasonics ; 138: 107223, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38553135

ABSTRACT

Thrombotic occlusions of large blood vessels are increasingly treated with catheter based mechanical approaches, one of the most prominent being to employ aspiration to extract clots through a hollow catheter lumen. A central technical challenge for aspiration catheters is to achieve sufficient suction force to overcome the resistance of clot material entering into the distal tip. In this study, we examine the feasibility of inducing cavitation within hollow cylindrical transducers with a view to ultimately using them to degrade the mechanical integrity of thrombus within the tip of an aspiration catheter. Hollow cylindrical radially polarized PZT transducers with 3.3/2.5 mm outer/inner diameters were assessed. Finite element simulations and hydrophone experiments were used to investigate the pressure field distribution as a function of element length and resonant mode (thickness, length). Operating in thickness mode (∼5 MHz) was found to be associated with the highest internal pressures, estimated to exceed 23 MPa. Cavitation was demonstrated to be achievable within the transducer under degassed water (10 %) conditions using hydrophone detection and high-frequency ultrasound imaging (40 MHz). Cavitation clouds occupied a substantial portion of the transducer lumen, in a manner that was dependent on the pulsing scheme employed (10 and 100 µs pulse lengths; 1.1, 11, and 110 ms pulse intervals). Collectively the results support the feasibility of achieving cavitation within a transducer compatible with mounting in the tip of an aspiration format catheter.


Subject(s)
High-Intensity Focused Ultrasound Ablation , High-Intensity Focused Ultrasound Ablation/methods , Transducers , Suction , Catheters , Water
20.
Chem Biodivers ; 21(5): e202400005, 2024 May.
Article in English | MEDLINE | ID: mdl-38504590

ABSTRACT

OBJECTIVE: To delve into the primary active ingredients and mechanism of Pueraria lobata for alleviating iron overload in alcoholic liver disease. METHODS: Pueraria lobata's potential targets and signaling pathways in treating alcohol-induced iron overloads were predicted using network pharmacology analysis. Then, animal experiments were used to validate the predictions of network pharmacology. The impact of puerarin or genistein on alcohol-induced iron accumulation, liver injury, oxidative stress, and apoptosis was assessed using morphological examination, biochemical index test, and immunofluorescence. Key proteins implicated in linked pathways were identified using RT-qPCR, western blot analysis, and immunohistochemistry. RESULTS: Network pharmacological predictions combined with animal experiments suggest that the model group compared to the control group, exhibited activation of the MAPK/ERK signaling pathway, suppression of hepcidin expression, and aggravated iron overload, liver damage, oxidative stress, and hepatocyte death. Puerarin and genistein, the active compounds in Pueraria lobata, effectively mitigated the aforementioned alcohol-induced effects. No statistically significant disparities were seen in the effects above between the two groups receiving drug therapy. CONCLUSION: This study preliminarily demonstrated that puerarin and genistein in Pueraria lobata may increase hepcidin production to alleviate alcohol-induced iron overload by inhibiting the MAPK/ERK signaling pathway.


Subject(s)
Iron Overload , Isoflavones , Liver Diseases, Alcoholic , MAP Kinase Signaling System , Pueraria , Pueraria/chemistry , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/pathology , Animals , Iron Overload/drug therapy , Iron Overload/metabolism , Isoflavones/pharmacology , Isoflavones/chemistry , MAP Kinase Signaling System/drug effects , Male , Oxidative Stress/drug effects , Genistein/pharmacology , Genistein/chemistry , Mice , Apoptosis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...