Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Bioresour Technol ; 321: 124469, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33296776

ABSTRACT

The impacts of WWTPs effluents on nutrients removal and epiphytic microbial community in constructed wetlands dominated by submersed macrophytes remain to be fully illustrated. In this study, compared to M. Spicatum, artificial submersed macrophytes (control) generally had higher NH4+-N (78.35% vs 80.52%) and TN (73.35% vs 90.25%) removal rates and similar COD (70.64% vs 70.80%) and TP (59.86% vs 60.82%) removal rates in wetlands receiving simulated effluents of WWTPs (GB18918-2002). Microbial population richness was higher in epiphytic biofilms on M. Spicatum than artificial ones, and substrates played the most decisive role in determining the microbial diversities. Network analysis revealed that there were more complex interactions among environmental parameters, bacteria and eukaryotes in M. Spicatum systems than in artificial ones. Nutrients in effluents could cause damage to M. Spicatum. The results highlight that artificial plants have better performance on effluents deep treatments than submerged plants.


Subject(s)
Microbiota , Wetlands , Bacteria , Biofilms , Nitrogen , Nutrients
2.
Environ Sci Pollut Res Int ; 27(36): 44983-44994, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32772287

ABSTRACT

Bacterial communities are sensitive to environmental fluctuations, and a better understanding of the relationships between bacterial community distribution and complex environmental conditions is important for the remediation of lake ecosystems. In this study, bacterial communities from 7 water and 7 sediment samples in 3 different regions (east, the hydrophyte-dominated region; north, the transitional region; west, the highly polluted region) of Lake Taihu were investigated via high-throughput sequencing. The physicochemical characterization showed that there were obvious differences in the trophic statuses of the three lake regions, which were mainly due to the differences in pollutant concentration and hydrophyte coverage. The Shannon and Simpson values indicated that the diversity of bacterial communities in water was the highest in the eastern region, followed by the northern and western regions, while there was no significant difference in the bacterial community characteristics in sediments among lake regions. We found that the western lake region had the highest Cyanobacteria concentration (34.71%), suggesting that Cyanobacteria may have competitive advantages over the other bacterioplankton in water columns without plants. The abundances of Chlorobi detected in the water samples in the east (2.69%) and north (6.66%) were higher than those in the west because the high turbidity in the western lake region was unsuitable for the growth of Chlorobi. Nitrospirae (average 6.36%) and Chloroflexi (average 11.62%) were more common in the sediments than in the water of Lake Taihu, suggesting that the nutrient level of Lake Taihu sediment was higher than that of water bodies. Welch's t test revealed that there were significant differences in species abundance (such as Microcystis, Synechococcus, Flavobacterium, and hgcI_clade) among the different regions, except that the east was relatively similar to the north. Canonical correspondence analysis demonstrated that TN, TP, and DO showed significant effects on the relative abundance of the dominant bacterial genera in water, while TOC, TP, and TN were positively correlated with TOC, TP and TN. This study provides useful information for understanding the variation in the diversity of bacterial communities in different habitats of Lake Taihu.


Subject(s)
Cyanobacteria , Lakes , China , Ecosystem , Geologic Sediments , Water
3.
Aquat Toxicol ; 226: 105559, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32652412

ABSTRACT

High nitrate (NO3--N) concentration is a growing aquatic risk concern worldwide. However, adverse effects of high NO3--N concentration on submerged macrophytes-epiphytic biofilms are unclear. In this study, the alterations in physiological changes, biofilms formation and chemical compositions were investigated on leaves of Vallisneria asiatica exposed to different NO3--N concentrations. The findings showed that 10 mg L-1NO3--N resulted in low photosynthetic efficiency by inhibiting chlorophyll content 26.2 % and decreased intrinsic efficiency of photosystem II significantly at 14th day post treatment. Malondialdehyde, several antioxidant enzyme activities (i.e., superoxide dismutase, peroxidase and catalase), and secondary metabolites (i.e., phenolic compounds and anthocyanin) were all significantly up-regulated with 10 mg L-1NO3--N, implied oxidative stress were stimulated. However, no significant alterations in these indicators were observed with 5 mg L-1NO3--N. Compared to control, 10 mg L-1NO3--N concentration significantly stimulated microbes growth in biofilm and reduced the roughness of leaf-biofilms surface, but it had little effect on the biofilms distribution (from single clone to blocks) as revealed by scanning electron microscope and multifractal analysis. Results from X-ray photoelectron spectroscopy analysis showed that the percentage of P, Cl, K and the ratio of O1 (-O-) /O2 (C = O) were higher in leaves of control than treatments with 10 mg L-1NO3--N, indicating that 10 mg L-1NO3--N concentration exhibited significant inhibition of chemical activity and nutrient uptake of the leaf surfaces. Overall, these results demonstrated that high NO3--N does stimulate the biofilm growth and can cause negative impacts on submerged macrophytes growth.


Subject(s)
Biofilms/growth & development , Hydrocharitaceae/drug effects , Nitrates/toxicity , Oxidative Stress/drug effects , Plant Leaves/drug effects , Water Pollutants, Chemical/toxicity , Biofilms/drug effects , Catalase/metabolism , Chlorophyll/metabolism , Hydrocharitaceae/growth & development , Hydrocharitaceae/metabolism , Hydrocharitaceae/microbiology , Malondialdehyde/metabolism , Peroxidases/metabolism , Photosynthesis/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/microbiology , Superoxide Dismutase/metabolism
4.
Sci Total Environ ; 715: 136950, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32007899

ABSTRACT

Microbes in epiphytic biofilms and surface sediments play crucial roles in the biogeochemical cycles in wetlands. However, little is known about the compositions of microbial community in wetlands dominated with submersed macrophytes. In this study, bacterial and eukaryotic community in epiphytic biofilms and surface sediments were investigated in wetlands with artificial plants and Myriophyllum verticillatum from September (~27 °C) to January (~9 °C). A total of 30 (including 13 bacterial and 17 eukaryotic) and 34 (including 14 bacterial and 20 eukaryotic) phyla were detected in epiphytic biofilms and sediments, respectively. Microbial community in epiphytic biofilms shifted with decreasing temperature, and biofilms on M. verticillatum were generally similar to those on artificial plants. Though the OTUs and Shannon values were significantly higher in sediments than epiphytic biofilms (p < 0.05), numbers of strongly correlated edges detected in biofilms (64 nodes with 182 edges) were at least three times of those in sediments (40 nodes with 57 edges) as revealed by co-occurrence networks analysis (|r| > 0.7, p < 0.05). These data suggest that there were complex interactions among microbes in epiphytic biofilms than sediments. Positive relationships among microbes revealed the predation, symbiosis, parasitism relationships and the collective degradation of organic matter, while negative ones may be ascribed to their different lifestyles. These results highlight that artificial plants play a similar role as submersed macrophytes as microbial carriers and can be potentially used an alternative substitutes to submersed macrophytes in wetlands.


Subject(s)
Microbiota , Bacteria , Biofilms , Eukaryota , Wetlands
5.
Chemosphere ; 192: 152-160, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29101854

ABSTRACT

Submerged macrophytes can provide attached surface for biofilms (known as periphyton) growth. In the present study, the alterations in biofilms formation, and chemical compositions and physiological responses were investigated on leaves of Vallisneria asiatica and Hydrilla verticillata exposed to 0.1 mg L-1 (control) or with 10 mg L-1 NH4+-N for 13 days. Results from physiological and biochemical indices (content of H2O2, malondialdehyde, total chlorophyll and activity of superoxide dismutase, catalase and peroxidase) showed that high ammonium caused oxidative damage to leaves of two species of plant. Multifractal analysis (based on scanning electron microscope images) showed that for the same plant, the values of width △α (△α = αmax-αmin) of the f(α) and Δf (Δf = f(αmin)-f(αmax)) were smaller on leaves surface of two species of plant treated with 10 mg L-1 NH4+-N for 13 days than their controls, suggesting high ammonium treatments reduced morphological heterogeneity of leaf surface and enhanced area of the colony-like biofilms. X-ray photoelectron spectroscopy analysis showed that C, O, N and P were dominant elements on leaves surface of two species of plant and ammonium application increased the percentage of C but decreased that of O. High ammonium increased C1 (C-C or C-H) percentage but decreased C2 (C-O) and C3 (O-C-O or C=O) percentage on leaves surface of two species of plant, indicating that ammonium stress changed the surface chemical states and thus might reduce the capacity of leaves to adsorb nutrients from water column. Our results provided useful information to understand ammonium induced toxicity to submerged macrophytes.


Subject(s)
Ammonium Compounds/metabolism , Hydrocharitaceae/physiology , Plant Leaves/physiology , Biofilms , Catalase/metabolism , Chlorophyll/metabolism , Hydrocharitaceae/enzymology , Hydrocharitaceae/growth & development , Malondialdehyde/metabolism , Peroxidases/metabolism , Plant Leaves/enzymology , Plant Leaves/growth & development , Plant Proteins/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL