Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Gels ; 8(3)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35323254

ABSTRACT

A simple heat treatment method was used to optimize the three-dimensional network structure of the hydrophobic aerogel, and during the heat treatment process at 200-1000 °C, the thermal conductivity of the aerogel reached the lowest to 0.02240 W/m·K between 250 °C and 300 °C, which was mainly due to the optimization of microstructure and pyrolysis of surface groups. Further Fluent heat-transfer simulation also confirmed the above results. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used to finely measure the pyrolysis process of aerogels, and the pyrolysis process of aerogel was divided into four stages. (I) Until 419 °C, as the temperature continued to rise, surface methyl groups were oxidized to form hydroxyl. (II) As the temperature reached to 232 °C, the oxidation proceeded. In addition, inside the aerogel, because of lacking oxygen, the reaction produced CH4 and C-Si bonds would form. (III) After 283 °C, Si-OH groups began to condense to form Si-O-Si, which optimized the three-dimensional network structures to be beneficial to improve the thermal insulation performance of silica aerogel. (IV) When it reached 547 °C, the chemical reaction was terminated, and all the primary particles gradually fused into secondary particles and sintered to form clusters.

2.
ACS Appl Mater Interfaces ; 13(23): 27458-27470, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34081863

ABSTRACT

Advanced thermal insulation materials with low thermal conductivity and robustness derived from regenerative resources are badly needed for building energy conservation. Among them, nanofibrillated cellulose aerogels have huge application potential in the field of thermal insulation materials, but it is still a challenge to prepare cellulose aerogels of excellent comprehensive properties in a simple way. Herein, we demonstrate a unidirectional freeze-drying strategy to develop a novel "robust-soft" anisotropic nanofibrillated cellulose aerogel (NFC-Si-T) by integrating nanofibrillated cellulose (NFC) and Si-O-Si bonding networks under the catalytic dehydration of p-toluenesulfonic acid (TsOH). The anisotropic structure endows the NFC-Si-T with high flexibility that can be easily bent or even tied with a knot, and in addition, it possesses high Young's modulus (1-3.66 MPa) that can resist the compression weight of 10,000 times of its own weight without deformation. Furthermore, the NFC-Si-T aerogels exhibit anisotropic thermal insulation performances with a low average thermal conductivity (0.028-0.049 W m-1 K-1). More importantly, the limited oxygen index of the NFC-Si-T reaches up to 42.6-51%, showing excellent flame-retardant performance. Therefore, the "robust-soft" anisotropic NFC-Si-T aerogels can be used as an advanced thermal insulation material for building thermal insulation applications.

3.
RSC Adv ; 11(18): 10827-10835, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-35423560

ABSTRACT

Polyimide aerogels were prepared using low-cost polymers with different structure capped polyamide oligomers serving as cross-linking agents. To investigate the effects of the anhydride density on cross-linker chain units and side groups of cross-linkers on their properties and microstructures, two kinds of polymers from maleic anhydride, endic anhydride, and styrene were prepared by simple radical polymerization. The polyimide aerogels exhibit densities as low as 0.087 g cm-3 and specific surface areas as high as 456 m2 g-1. And the maximum modulus of the aerogel is up to 21.3 MPa. These cross-linkers are alternatives to expensive small molecule cross-linkers, therefore reducing the cost of PI aerogels.

4.
ACS Appl Mater Interfaces ; 12(30): 33621-33630, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32603080

ABSTRACT

Electrochemical conversion reaction based electrodes offer a high sodium storage capacity in rechargeable batteries by utilizing the variable valence states of transition metals. Thus, transition metal chalcogenides (TMCs) as such materials have been intensively investigated in recent years to explore the possibilities of practical application in rechargeable sodium-ion batteries; however, it is hindered by poor rate performance and a high-cost preparation method. In addition, some issues in regards to conversion reactions remain poorly understood, including incomplete reversible reaction processes, polarization, and hysteresis. Herein, a novel cagelike CoSe2@N-doped carbon aerogels hybrid composite was designed and prepared by a facile and high-efficiency sol-gel technology. Benefiting from the surface engineering optimization, high charge transfer, and low-energy diffusion barrier, the CoSe2@N-doped carbon aerogels exhibit a high pseudocapacitive property. Most importantly, the CoSe2 anode has been carefully investigated at different discharge/charge states by X-ray absorption near edge spectroscopy technologies and density functional theory (DFT) simulations, which deeply reveal the capacity fading mechanism and phase transition behavior.

5.
ACS Appl Mater Interfaces ; 12(29): 32726-32735, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32589008

ABSTRACT

Lithium-sulfur batteries have been considered as one of the most promising energy storage devices due to their high theoretical capacity and low cost. They go through complicated multistep electrochemical reactions from solid (sulfur)-liquid (soluble polysulfide) to liquid (soluble polysulfide)-solid (Li2S) during the discharge process. Actually, during this process, the transition from liquid phase (Li2S4) to solid phase (Li2S) at 2.1 V plateau is a difficult step with sluggish kinetics, thus leading to low sulfur utilization and discharge capacity. To promote the transition processes and enhance the sulfur utilization, CoS2@multichannel carbon nanofiber composites (CoS2@MCNFs) serving as sulfur host were successfully synthesized. Herein, CoS2 catalysts are proven to be beneficial not only for enhancing the phase-transition kinetics but also for adsorbing soluble polysulfide. Besides, unlike other carbon materials, MCNFs have plenty of hollow channels and thus enhance sulfur loading and conductivity. Accordingly, the discharge capacity increases 32% more than that of electrode without CoS2. And a very low capacity fade rate of 0.03% per cycle (over 450 cycles) is obtained at a 0.5C rate. This work has opened up new ideas for enhancing sulfur utilization for high sulfur-loading electrode.

6.
ACS Nano ; 14(5): 5917-5925, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32330003

ABSTRACT

A layer-spacing-enlarged MoS2 nanotube (LE-MoS2) consisting of hierarchical superstructural nanosheets (-MoS2-carbon layer-MoS2-) was fabricated and served as the sulfur host. The (002) lattice plane of LE-MoS2 is greatly expanded to 1.04 nm and 67.7% higher than that of the conventional 2H-MoS2. Benefitting from the layer-spacing-enlarged hierarchical superstructure of LE-MoS2, the catalytic effect on the S(s)-Li2Sx (soluble, x > 6)-Li2Sy (soluble, y > 2)-Li2S(s) phase transformation kinetics and immobilizing effect on the soluble Li2Sy in Li-S batteries are both further enhanced and demonstrated by in situ X-ray adsorption near-edge structure spectroscopy and first-principles calculations. The formation of hierarchical superstructural nanosheets was carefully investigated by customized synchrotron vacuum ultraviolet photoionization mass spectrometry.

7.
ACS Appl Mater Interfaces ; 11(37): 34010-34019, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31453677

ABSTRACT

Although hybrid photocathodes built by immobilizing molecular catalysts to the surface of semiconductors through chemical linkages have been reported in recent years, systematic and comparative studies remain scarce about the impact of various anchoring groups on the performance, stability, and charge-transfer kinetics of molecular catalyst-decorated hybrid photocathodes for photoelectrochemical (PEC) H2 production. In this study, the molecular cobaloxime catalysts, CoPy-4-X (Py = pyridine, X = PO3H2, COOH, and CONH(OH)), bearing different anchoring groups were synthesized and covalently immobilized to the surface of the porous TiO2 layer coated on a p-Si plate or a fluorine-doped tin oxide glass. The influence of the anchoring groups on the performance of p-Si/TiO2/CoPy-4-X photocathodes was comparatively studied for PEC H2 evolution. Among the tested hybrid photocathodes, the one with a hydroxamate as an anchoring group displayed higher activity and lower charge-transfer resistance than that observed for the electrode with a carboxylate or a phosphonate as the anchoring group. Notably, the catalytic current of p-Si/TiO2/CoPy-4-CONH(OH) was attenuated only by 2.9% in the controlled potential photoelectrolysis tests in borate buffer solution at pH 9 at 0 V versus a reversible hydrogen electrode over 6 h. Moreover, the influence of anchoring groups on the interfacial electron transfer from the TiO2 layer to the immobilized cobaloxime catalyst and electron-hole recombination was studied by transient absorption spectroscopy. These results revealed that the hydroxamate as an anchoring group is superior to the carboxylate and phosphonate groups for speeding up the interfacial electron transfer and firmly immobilizing the molecular catalysts to the metal oxide semiconductors to build efficient and stable hybrid photoelectrodes.

8.
Nanoscale ; 11(24): 11671-11678, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31179476

ABSTRACT

Selenium cathodes have attracted a great deal of attention due to their much higher electronic conductivity compared to sulfur cathodes and similar volumetric capacity to them. However, selenium cathodes still suffer from rapid capacity fading because of low utilization of active materials, high volume changes and the shuttle effect of polyselenides. Herein, we prepared selenium-carbon aerogel composites as cathodes for sodium-selenium batteries by infiltrating selenium into the microporous structure of N-doped interconnected carbon aerogels (Se@NCAs). The carbon matrix could effectively accommodate the volume change of Se during cycling and alleviate the shuttle effect of polyselenides. The Se@NCA cathode exhibits an excellent discharge capacity (600 mA h g-1 after 50 cycles at 0.1 A g-1) and a superior rate capability (430 mA h g-1 at 2 A g-1) for Na-Se batteries. In addition, it also shows a superior long cycling life of 407 mA h g-1 at a current density of 0.5 A g-1 after 800 cycles with only 0.04% capacity decline per cycle.

9.
ACS Appl Mater Interfaces ; 11(21): 19132-19140, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31062963

ABSTRACT

Photoelectrochemical (PEC) water splitting is a promising but immensely challenging technology for sustainable production of hydrogen. To this end, highly active, durable, and inexpensive photocathodes that operate under conditions compatible with those for photoanodes are desired. Herein, Si-based composite photocathodes were constructed by coating the front surface of Si with an N-doped carbon nanolayer and then a TiO2 protective layer, followed by decorating the electrode surface with Ni and Ni-Mo catalysts. The carbon nanolayer, denoted as CPDA, was formed directly on the Si surface by in situ self-polymerization of dopamine, followed by carbonization of the polydopamine (PDA) coating. The performance of the as-fabricated Si photocathodes with and without the CPDA layer was comparatively studied for PEC hydrogen evolution reaction (HER) in alkaline electrolytes to evaluate the effect of the sandwich CPDA layer in between the Si substrate and the TiO2 layer on the photoelectrocatalytic behaviors of Si-based electrodes. The photocathodes containing the CPDA layer demonstrated lower electron transfer resistance, higher built-in photovoltage, and larger band bending relative to the analogous electrodes without the CPDA layer. Accordingly, the short-circuit photocurrents of the Ni and Ni-Mo-decorated photocathodes with the CPDA layer were enhanced by a factor of 2.8-3.3, and their open-circuit photovoltages were enlarged by 0.14-0.22 V, compared to those of the corresponding electrodes without the CPDA layer in 1 M KOH under simulated 1 sun illumination. Moreover, the photocathodes with the CPDA layer also exhibited an improved stability for PEC HER in alkaline solutions, with a faradaic efficiency of 90-97% in the initial hour.

10.
Nanoscale ; 10(44): 20813-20820, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30402645

ABSTRACT

Novel nanoflower-like N-doped C/CoS2 spheres assembled from 2D wrinkled CoS2 nanosheets were synthesized through a facile one-pot solvothermal method followed by sulfurization. Ascribed to the optimized 3D nanostructure and rational surface engineering, the unique hierarchical structure of the nanoflower-like C/CoS2 composites showed an excellent sodium ion storage capacity accompanied by high specific capacity, superior rate performance and long-term cycling stability. Specifically, the conductive interconnected wrinkled nanosheets create a number of mesoporous structures and thus can greatly release the mechanical stress caused by Na+ insertion/extraction. Besides, it was observed from the experiments that many extra defect vacancies and Na+ storage sites are introduced by the nitrogen doping process. It was also observed that the crosslinked 2D nanosheets can effectively reduce the diffusion lengths of sodium ions and electrons, resulting in an outstanding rate performance (>700 mA h g-1 at 1 A g-1 and 458 mA h g-1 at even 10 A g-1) and extraordinary cycling stability (698 mA h g-1 at 1 A g-1 after 500 cycles). The results provide a facile approach to fabricate promising anode materials for high-performance sodium-ion batteries (SIBs).

11.
ACS Appl Mater Interfaces ; 10(37): 31441-31451, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30153409

ABSTRACT

Na-ion batteries (NIBs) have attracted increasing attention given the fact that sodium is relatively more plentiful and affordable than lithium for sustainable and large-scale energy storage systems. However, the shortage of electrode materials with outstanding comprehensive properties has limited the practical implementations of NIBs. Among all the discovered anode materials, transition-metal sulfide has been proven as one of the most competitive and promising ones due to its excellent redox reversibility and relatively high theoretical capacity. In this study, double-morphology N-doped CoS2/multichannel carbon nanofibers composites (CoS2/MCNFs) are precisely designed, which overcome common issues such as the poor cycling life and inferior rate performance of CoS2 electrodes. The conductive 3D interconnected multichannel nanostructure of CoS2/MCNFs provides efficient buffer zones for the release of mechanical stresses from Na+ ions intercalation/deintercalation. The synergy of the diverse structural features enables a robust frame and a rapid electrochemical reaction in CoS2/MCNFs anode, resulting in an impressive long-term cycling life of 900 cycles with a capacity of 620 mAh g-1 at 1 A g-1 (86.4% theoretical capacity) and a surprisingly high-power output. The proposed design in this study provides a rational and novel thought for fabricating electrode materials.

12.
RSC Adv ; 8(5): 2350-2356, 2018 Jan 09.
Article in English | MEDLINE | ID: mdl-35541493

ABSTRACT

In this work, we have successfully prepared a lightweight, highly hydrophobic and superb thermal insulating aerogel/geopolymer composite by a sol-gel immersion method. After silica aerogel was impregnated, the composite exhibited nano-porous structures. Moreover, scanning electron microscopy observations revealed that the aerogel particles were tightly anchored on the geopolymer surface. With several excellent properties (bulk density: 306.5 g cm-3, thermal conductivity: 0.0480 W m-1 K-1 and maximum compressive strength: 0.79 MPa) the as-prepared composite shows great potential to be applied in the thermal insulation field.

13.
ACS Appl Mater Interfaces ; 9(41): 35820-35828, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28968056

ABSTRACT

Exploration for stable and high-powered electrode materials is significant due to the growing demand for energy storage and also challengeable to the development and application of Na-ion batteries (NIBs). Among all promising electrode materials for NIBs, transition-mental sulfides have been identified as potential candidates owing to their distinct physics-chemistry characteristics. In this work, CoS2 nanomaterials anchored into multichannel carbon nanofibers (MCNFs), synthesized via a facile solvothermal method with a sulfidation process, are studied as flexible free-standing electrode materials for NIBs. CoS2 nanoparticles uniformly distributed in the vertical and horizontal multichannel networks. Such nanoarchitecture can not only support space for volume expansion of CoS2 during discharge/charge process, but also facilitate ion/electron transport along the interfaces. In particular, the CoS2@MCNF electrode delivers an impressively high specific capacity (537.5 mAh g-1 at 0.1 A g-1), extraordinarily long-term cycling stability (315.7 mAh g-1 at at 1 A g-1 after 1000 cycles), and excellent rate capacity (537.5 mAh g-1 at 0.1 A g-1 and 201.9 mAh g-1 at 10 A g-1) for sodium storage. Free-standing CoS2@MCNF composites with mechanical flexibility provide a promising electrode material for high-powered NIBs and flexible cells.

14.
J Hazard Mater ; 320: 350-358, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27566928

ABSTRACT

Silica aerogels (SAs) present great application prospects especially on thermal insulation, but their flammability is usually ignored. A combined study on the combustion behaviors and oxidation kinetics of hydrophobic silica aerogels prepared by ambient pressure drying (SA-apd) and supercritical drying (SA-sd) was performed by employing cone calorimeter and thermal analysis. The whole combustion process for SAs could be divided into three stages in which a fire propagation phenomenon was observed with the radial propagation velocity of 6.6-8.3cms-1. Current investigations forcefully demonstrated that hydrophobic SAs were combustible and easy to flashover when exposed to a heat flux higher than 25kWm-2. Compared between the two SAs, the SA-sd owned a less fire risk with presenting a less fire hazard and a lower smoke toxicity than those of SA-apd. The oxidation kinetics by Ozawa-Flynn-Wall method revealed that SA-sd had larger apparent activation energies than those of SA-apd which conformed to the thermal stability analysis by TG-DSC. Furthermore, a two-step combustion mechanism was proposed to explain the combustion behaviors of SAs.

SELECTION OF CITATIONS
SEARCH DETAIL
...