Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioprocess Biosyst Eng ; 46(11): 1639-1650, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37733076

ABSTRACT

With potent herbicidal activity, biocatalysis synthesis of L-glufosinate has drawn attention. In present research, NAP-Das2.3, a deacetylase capable of stereoselectively resolving N-acetyl-L-glufosinate to L-glufosinate mined from Arenimonas malthae, was heterologously expressed and characterized. In Escherichia coli, NAP-Das2.3 activity only reached 0.25 U/L due to the formation of inclusive bodies. Efficient soluble expression of NAP-Das2.3 was achieved in Pichia pastoris. In shake flask and 5 L bioreactor fermentation, NAP-Das2.3 activity by recombinant P. pastoris reached 107.39 U/L and 1287.52 U/L, respectively. The optimum temperature and pH for N-acetyl-glufosinate hydrolysis by NAP-Das2.3 were 45 °C and pH 8.0, respectively. The Km and Vmax of NAP-Das2.3 towards N-acetyl-glufosinate were 25.32 mM and 19.23 µmol mg-1 min-1, respectively. Within 90 min, 92.71% of L-enantiomer in 100 mM racemic N-acetyl-glufosinate was converted by NAP-Das2.3. L-glufosinate with high optical purity (e.e.P above 99.9%) was obtained. Therefore, the recombinant NAP-Das2.3 might be an alternative for L-glufosinate biosynthesis.


Subject(s)
Bioreactors , Pichia , Recombinant Proteins/chemistry , Pichia/genetics , Pichia/metabolism , Fermentation
2.
J Colloid Interface Sci ; 636: 492-500, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36652824

ABSTRACT

Exploring highly efficient electromagnetic interference (EMI) shielding filler is urgently desired for next-generation wireless communication and integrated electronics. In this regard, a series of heterogeneous MoO2/N-doped carbon (MoO2/NC) nanorods with tunable conductivity have been successfully synthesized by regulating the pyrolysis temperature within 600, 700 and 800 °C. Profiting from the rational design of heterointerface and low-dimensional structure, the MoO2/NC powder achieves stronger EMI shielding capacity with the incremental temperature. It is found that the MoO2/NC-800 nanorods exhibit the optimal average EMI shielding effectiveness (SE) of 57.2 dB at a thickness of ∼0.3 mm in the X band. Meanwhile, the corresponding shielding mechanisms of MoO2/NC nanorods are also elaborately explained. More interestingly, the increase of sintering temperature makes an obvious effect on absorption loss but has little influence on reflection loss, demonstrating that adjusting the pyrolysis temperature is an effective strategy to strengthen the electromagnetic energy dissipation.

SELECTION OF CITATIONS
SEARCH DETAIL
...