Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Biomater Appl ; 37(4): 577-587, 2022 10.
Article in English | MEDLINE | ID: mdl-35730493

ABSTRACT

An effective dressing is essential for wound healing. In fact, the wettability performance is one of the most important factors of a wound dressing. The fundamental functions of a wound dressing involve the absorption of excess exudates and maintenance of optimal moisture at the wound by controlling water evaporation. Here, we designed a type of chitosan (CS) sponge and PCL nanofibrous membrane composite dressing with asymmetric wettability surfaces as wound healing materials for biomedical applications. The hydrophobic surfaces of the composite dressing were waterproof and could efficiently control the water vapor transmission rate, whereas the hydrophilic surface of the CS sponge had good cytocompatibility and water-absorbing capability. Insulin-like growth factor-2 (IGF-2) was added to the CS sponge, and exhibited a stimulatory effect on fibroblasts migration and proliferation. Therefore, the fabricated CS sponge and PCL membrane composite dressing had excellent cytocompatibility, vapor transmission rate, and liquid absorption and asymmetric wettability, suggesting its potential as a promising alternative to traditional wound dressing.


Subject(s)
Chitosan , Anti-Bacterial Agents/chemistry , Bandages , Chitosan/chemistry , Insulin-Like Growth Factor II , Steam , Wettability
2.
Nat Commun ; 12(1): 1377, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33654070

ABSTRACT

Magnetic fluctuations induced by geometric frustration of local Ir-spins disturb the formation of long-range magnetic order in the family of pyrochlore iridates. As a consequence, Pr2Ir2O7 lies at a tuning-free antiferromagnetic-to-paramagnetic quantum critical point and exhibits an array of complex phenomena including the Kondo effect, biquadratic band structure, and metallic spin liquid. Using spectroscopic imaging with the scanning tunneling microscope, complemented with machine learning, density functional theory and theoretical modeling, we probe the local electronic states in Pr2Ir2O7 and find an electronic phase separation. Nanoscale regions with a well-defined Kondo resonance are interweaved with a non-magnetic metallic phase with Kondo-destruction. These spatial nanoscale patterns display a fractal geometry with power-law behavior extended over two decades, consistent with being in proximity to a critical point. Our discovery reveals a nanoscale tuning route, viz. using a spatial variation of the electronic potential as a means of adjusting the balance between Kondo entanglement and geometric frustration.

SELECTION OF CITATIONS
SEARCH DETAIL
...